Joint Optimization for Federated Learning Over the Air

被引:0
|
作者
Fan, Xin [1 ]
Wang, Yue [2 ]
Huo, Yan [1 ]
Tian, Zhi [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[2] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA USA
基金
美国国家科学基金会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
Federated learning; analog aggregation; convergence analysis; joint optimization; worker scheduling; power scaling;
D O I
10.1109/ICC45855.2022.9838269
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, we focus on federated learning (FL) over the air based on analog aggregation transmission in realistic wireless networks. We first derive a closed-form expression for the expected convergence rate of FL over the air, which theoretically quantifies the impact of analog aggregation on FL. Based on that, we further develop a joint optimization model for accurate FL implementation, which allows a parameter server to select a subset of edge devices and determine an appropriate power scaling factor. Such a joint optimization of device selection and power control for FL over the air is then formulated as an mixed integer programming problem. Finally, we efficiently solve this problem via a simple finite-set search method. Simulation results show that the proposed solutions developed for wireless channels outperform a benchmark method, and could achieve comparable performance of the ideal case where FL is implemented over reliable and error-free wireless channels.
引用
收藏
页码:2798 / 2803
页数:6
相关论文
共 50 条
  • [21] Convergence Analysis and Optimization of SWIPT-Based Over-the-Air Federated Learning
    Fan, Shaoshuai
    Tao, Shilin
    Ni, Wanli
    Tian, Hui
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (06) : 1352 - 1356
  • [22] Joint Client Selection and Receive Beamforming for Over-the-Air Federated Learning With Energy Harvesting
    Chen, Caijuan
    Chiang, Yi-Han
    Lin, Hai
    Lui, John C. S.
    Ji, Yusheng
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2023, 4 : 1127 - 1140
  • [23] Over-the-Air Computation Empowered Federated Learning: A Joint Uplink-Downlink Design
    Zhang, Deyou
    Xiao, Ming
    Skoglund, Mikael
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [24] Joint Compression and Deadline Optimization for Wireless Federated Learning
    Zhang, Maojun
    Li, Yang
    Liu, Dongzhu
    Jin, Richeng
    Zhu, Guangxu
    Zhong, Caijun
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (07) : 7939 - 7951
  • [25] Over-the-Air Federated Learning with Enhanced Privacy
    Xue, Xiaochan
    Hasan, Moh Khalid
    Yu, Shucheng
    Kandel, Laxima Niure
    Song, Min
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4546 - 4551
  • [26] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [27] An Overview on Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Lyu, Zhonghao
    Zhu, Guangxu
    Xu, Jie
    Xu, Lexi
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 202 - 210
  • [28] Scalable Hierarchical Over-the-Air Federated Learning
    Azimi-Abarghouyi S.M.
    Fodor V.
    IEEE Transactions on Wireless Communications, 2024, 23 (08) : 1 - 1
  • [29] Federated Learning with Partial Gradients Over-the-Air
    Wang, Wendi
    Chen, Zihan
    Pappas, Nikolaos
    Yang, Howard H.
    2023 20TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING, SECON, 2023,
  • [30] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,