Joint Optimization for Federated Learning Over the Air

被引:0
|
作者
Fan, Xin [1 ]
Wang, Yue [2 ]
Huo, Yan [1 ]
Tian, Zhi [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[2] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA USA
基金
美国国家科学基金会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
Federated learning; analog aggregation; convergence analysis; joint optimization; worker scheduling; power scaling;
D O I
10.1109/ICC45855.2022.9838269
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, we focus on federated learning (FL) over the air based on analog aggregation transmission in realistic wireless networks. We first derive a closed-form expression for the expected convergence rate of FL over the air, which theoretically quantifies the impact of analog aggregation on FL. Based on that, we further develop a joint optimization model for accurate FL implementation, which allows a parameter server to select a subset of edge devices and determine an appropriate power scaling factor. Such a joint optimization of device selection and power control for FL over the air is then formulated as an mixed integer programming problem. Finally, we efficiently solve this problem via a simple finite-set search method. Simulation results show that the proposed solutions developed for wireless channels outperform a benchmark method, and could achieve comparable performance of the ideal case where FL is implemented over reliable and error-free wireless channels.
引用
收藏
页码:2798 / 2803
页数:6
相关论文
共 50 条
  • [1] Joint Optimization of Communications and Federated Learning Over the Air
    Fan, Xin
    Wang, Yue
    Huo, Yan
    Tian, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 4434 - 4449
  • [2] Joint Beamforming and Learning Rate Optimization for Over-the-Air Federated Learning
    Kim, Minsik
    Park, Daeyoung
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (10) : 13706 - 13711
  • [3] Over-the-Air Federated Learning and Optimization
    Zhu, Jingyang
    Shi, Yuanming
    Zhou, Yong
    Jiang, Chunxiao
    Chen, Wei
    Letaief, Khaled B.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 16996 - 17020
  • [4] Over-the-air Learning Rate Optimization for Federated Learning
    Xu, Chunmei
    Liu, Shengheng
    Huang, Yongming
    Huang, Chongwen
    Zhang, Zhaoyang
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,
  • [5] Joint Trajectory and Communication Optimization for UAV-Assisted Over-The-Air Federated Learning
    Hsu, Kai-Chieh
    Lee, Ming-Chun
    Hong, Y. -W. Peter
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 1666 - 1671
  • [6] Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation
    Xu, Chunmei
    Liu, Shengheng
    Yang, Zhaohui
    Huang, Yongming
    Wong, Kai-Kit
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3742 - 3756
  • [7] Online Optimization for Over-the-Air Federated Learning With Energy Harvesting
    An, Qiaochu
    Zhou, Yong
    Wang, Zhibin
    Shan, Hangguan
    Shi, Yuanming
    Bennis, Mehdi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7291 - 7306
  • [8] Time Efficient Joint Optimization Federated Learning over Wireless Communication Networks
    Junshuai Sun
    Yingying Wang
    Xin Sun
    Na Li
    Gaofeng Nie
    China Communications, 2022, 19 (06) : 169 - 178
  • [9] Time efficient joint optimization federated learning over wireless communication networks
    Sun, Junshuai
    Wang, Yingying
    Sun, Xin
    Li, Na
    Nie, Gaofeng
    CHINA COMMUNICATIONS, 2022, 19 (06) : 169 - 178
  • [10] Joint Optimization of Convergence and Latency for Hierarchical Federated Learning Over Wireless Networks
    Sun, Haofeng
    Tian, Hui
    Zheng, Jingheng
    Ni, Wanli
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (03) : 691 - 695