Joint Beamforming and Learning Rate Optimization for Over-the-Air Federated Learning

被引:3
|
作者
Kim, Minsik [1 ]
Park, Daeyoung [1 ]
机构
[1] Inha Univ, Dept Elect & Comp Engn, Incheon 22212, South Korea
关键词
Federated learning; edge machine learning; over-the-air computation; beamforming; MULTIPLE-ACCESS; COMPUTATION;
D O I
10.1109/TVT.2023.3276786
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider a joint design of beamforming vector and learning rate in MIMO over-the-air computation (AirComp) for federated learning. Since the learning performance improves with adaptive learning rates, we jointly optimize the receive beamforming vector and the learning rates. We first demonstrate the AirComp-multicasting duality between the uplink AirComp receive beamforming for federated learning systems and the downlink transmit beamforming for multicast systems. We design a low-complexity algorithm based on the projected subgradient method of the dual problem. Numerical results show that the proposed algorithm achieves nearly the same performance as the ideal federated learning system without aggregation errors.
引用
下载
收藏
页码:13706 / 13711
页数:6
相关论文
共 50 条
  • [1] Over-the-air Learning Rate Optimization for Federated Learning
    Xu, Chunmei
    Liu, Shengheng
    Huang, Yongming
    Huang, Chongwen
    Zhang, Zhaoyang
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,
  • [2] Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation
    Xu, Chunmei
    Liu, Shengheng
    Yang, Zhaohui
    Huang, Yongming
    Wong, Kai-Kit
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3742 - 3756
  • [3] Over-the-Air Federated Learning and Optimization
    Zhu, Jingyang
    Shi, Yuanming
    Zhou, Yong
    Jiang, Chunxiao
    Chen, Wei
    Letaief, Khaled B.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 16996 - 17020
  • [4] Joint Client Selection and Receive Beamforming for Over-the-Air Federated Learning With Energy Harvesting
    Chen, Caijuan
    Chiang, Yi-Han
    Lin, Hai
    Lui, John C. S.
    Ji, Yusheng
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2023, 4 : 1127 - 1140
  • [5] Beamforming Vector Design and Device Selection in Over-the-Air Federated Learning
    Kim, Minsik
    Swindlehurst, A. Lee
    Park, Daeyoung
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 7464 - 7477
  • [6] Beamforming and Device Selection Design in Federated Learning With Over-the-Air Aggregation
    Kalarde, Faeze Moradi
    Dong, Min
    Liang, Ben
    Ahmed, Yahia A. Eldemerdash
    Cheng, Ho Ting
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 1710 - 1723
  • [7] Power Minimization in Federated Learning with Over-the-air Aggregation and Receiver Beamforming
    Kalarde, Faeze Moradi
    Liang, Ben
    Dong, Min
    Ahmed, Yahia A. Eldemerdash
    Cheng, Ho Ting
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 259 - 267
  • [8] Joint Optimization for Federated Learning Over the Air
    Fan, Xin
    Wang, Yue
    Huo, Yan
    Tian, Zhi
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2798 - 2803
  • [9] Over-the-Air Federated Graph Learning
    Wang, Zixin
    Zhou, Yong
    Shi, Yuanming
    IEEE Transactions on Wireless Communications, 2024, 23 (12) : 18669 - 18683
  • [10] Over-the-Air Clustered Federated Learning
    Sami, Hasin Us
    Guler, Basak
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7877 - 7893