Joint Beamforming and Learning Rate Optimization for Over-the-Air Federated Learning

被引:3
|
作者
Kim, Minsik [1 ]
Park, Daeyoung [1 ]
机构
[1] Inha Univ, Dept Elect & Comp Engn, Incheon 22212, South Korea
关键词
Federated learning; edge machine learning; over-the-air computation; beamforming; MULTIPLE-ACCESS; COMPUTATION;
D O I
10.1109/TVT.2023.3276786
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider a joint design of beamforming vector and learning rate in MIMO over-the-air computation (AirComp) for federated learning. Since the learning performance improves with adaptive learning rates, we jointly optimize the receive beamforming vector and the learning rates. We first demonstrate the AirComp-multicasting duality between the uplink AirComp receive beamforming for federated learning systems and the downlink transmit beamforming for multicast systems. We design a low-complexity algorithm based on the projected subgradient method of the dual problem. Numerical results show that the proposed algorithm achieves nearly the same performance as the ideal federated learning system without aggregation errors.
引用
收藏
页码:13706 / 13711
页数:6
相关论文
共 50 条
  • [21] Over-the-Air Federated Learning via Second-Order Optimization
    Yang, Peng
    Jiang, Yuning
    Wang, Ting
    Zhou, Yong
    Shi, Yuanming
    Jones, Colin N.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 10560 - 10575
  • [22] Over-the-Air Federated Learning with Enhanced Privacy
    Xue, Xiaochan
    Hasan, Moh Khalid
    Yu, Shucheng
    Kandel, Laxima Niure
    Song, Min
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4546 - 4551
  • [23] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [24] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [25] Inverse Feasibility in Over-the-Air Federated Learning
    Piotrowski, Tomasz
    Ismayilov, Rafail
    Frey, Matthias
    Cavalcante, Renato L. G.
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1434 - 1438
  • [26] Hierarchical Over-the-Air Federated Edge Learning
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3376 - 3381
  • [27] COTAF: Convergent Over-the-Air Federated Learning
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [28] An Overview on Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Lyu, Zhonghao
    Zhu, Guangxu
    Xu, Jie
    Xu, Lexi
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 202 - 210
  • [29] Scalable Hierarchical Over-the-Air Federated Learning
    Azimi-Abarghouyi S.M.
    Fodor V.
    IEEE Transactions on Wireless Communications, 2024, 23 (08) : 1 - 1
  • [30] Over-the-Air Computation for Vertical Federated Learning
    Zeng, Xiangyu
    Xia, Shuhao
    Yang, Kai
    Wu, Youlong
    Shi, Yuanming
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 788 - 793