LogTM-SE: Decoupling hardware transactional memory from caches

被引:0
|
作者
Yen, Luke [1 ]
Bobba, Jayaram [1 ]
Marty, Michael R. [1 ]
Moore, Kevin E. [1 ]
Volos, Haris [1 ]
Hill, Mark D. [1 ]
Swift, Michael M. [1 ]
Wood, David A. [1 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, 1210 W Dayton St, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a hardware transactional memory (HTM) system called LogTM Signature Edition (LogTM-SE). LogTM-SE uses signatures to summarize a transaction's read- and write-sets and detects conflicts on coherence requests (eager conflict detection). Transactions update memory "in place" after saving the old value in a per-thread memory log (eager version management). Finally, a transaction commits locally by clearing its signature, resetting the log pointer, etc., while aborts must undo the log. LogTM-SE achieves two key benefits. First, signatures and logs can be implemented without changes to highly-optimized cache arrays because LogTM-SE never moves cached data, changes a block's cache state, or flash clears bits in the cache. Second, transactions are more easily virtualized because signatures and logs are software accessible, allowing the operating system and runtime to save and restore this state. In particular, LogTM-SE allows cache victimization, unbounded nesting (both open and closed), thread context switching and migration, and paging.
引用
收藏
页码:261 / +
页数:2
相关论文
共 50 条
  • [21] Adaptive Snoop Granularity and Transactional Snoop Filtering in Hardware Transactional Memory
    Atoofian, Ehsan
    CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2014, 37 (02): : 76 - 85
  • [22] Conflict Graph Based Hardware Transactional Memory
    Zeng, Kun
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 5, 2010, : 496 - 501
  • [23] Hardware Transactional Memory with Delayed-Committing
    Ichii, Sekai
    Tashiro, Saki
    Nunome, Atsushi
    Hirata, Hiroaki
    Shibayama, Kiyoshi
    3RD INTERNATIONAL CONFERENCE ON APPLIED COMPUTING AND INFORMATION TECHNOLOGY (ACIT 2015) 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND INTELLIGENCE (CSI 2015), 2015, : 154 - 161
  • [24] Core Reliability: Leveraging Hardware Transactional Memory
    Do, Sang Wook Stephen
    Dubois, Michel
    IEEE COMPUTER ARCHITECTURE LETTERS, 2018, 17 (02) : 105 - 108
  • [25] Efficient Transaction Nesting in Hardware Transactional Memory
    Liu, Yi
    Su, Yangming
    Zhang, Cui
    Wu, Mingyu
    Zhang, Xin
    Li, He
    Qian, Depei
    ARCHITECTURE OF COMPUTING SYSTEMS - ARCS 2010, PROCEEDINGS, 2010, 5974 : 138 - +
  • [26] Exploiting object structure in hardware transactional memory
    Khan, Behram
    Horsnell, Matthew
    Rogers, Ian
    Lujan, Mikel
    Dinn, Andrew
    Watson, Ian
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2009, 24 (05): : 303 - 315
  • [27] Improving Utilization of Hardware Signatures in Transactional Memory
    Choi, Woojin
    Draper, Jeffrey
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013, 24 (11) : 2230 - 2239
  • [28] Hardware Acceleration of Transactional Memory on Commodity Systems
    Casper, Jared
    Oguntebi, Tayo
    Hong, Sungpack
    Bronson, Nathan G.
    Kozyrakis, Christos
    Olukotun, Kunle
    ACM SIGPLAN NOTICES, 2011, 46 (03) : 27 - 38
  • [29] Consolidated Conflict Detection for Hardware Transactional Memory
    Zhao, Lihang
    Draper, Jeffrey
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT'14), 2014, : 201 - 212
  • [30] Scalable and Reliable Communication for Hardware Transactional Memory
    Pugsley, Seth H.
    Awasthi, Manu
    Madan, Niti
    Muralimanohar, Naveen
    Balasubramonian, Rajeev
    PACT'08: PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, 2008, : 144 - 154