Electrochemical Imaging for Single-cell Analysis of Cell Adhesion Using a Collagen-coated Large-scale Integration (LSI)-based Amperometric Device

被引:12
|
作者
Abe, Hiroya [1 ]
Kanno, Yusuke [1 ]
Ino, Kosuke [1 ]
Inoue, Kumi Y. [1 ]
Suda, Atsushi [2 ]
Kunikata, Ryota [2 ]
Matsudaira, Masahki [3 ]
Shiku, Hitoshi [1 ]
Matsue, Tomokazu [1 ,4 ]
机构
[1] Tohoku Univ, Grad Sch Environm Studies, Aoba Ku, 6-6-11-604 Aramaki Aza Aoba, Sendai, Miyagi 9808579, Japan
[2] Japan Aviat Elect Ind Ltd, 1-1 Musashino 3 Chome, Tokyo 1968555, Japan
[3] Tohoku Univ, Micro Syst Integrat Ctr, Aoba Ku, 519-1176 Aramaki Aza Aoba, Sendai, Miyagi 9800845, Japan
[4] Tohoku Univ, WPI Adv Inst Mat Res, Aoba Ku, 2-1-1-509 Katahira, Sendai, Miyagi 9808577, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Electrochemical Imaging; LSI-based Amperometric Device; Single-cell Analysis; Cell Adhesion; EMBRYOID BODIES; SENSOR ARRAY; CHIP DEVICE; RELEASE; MICROELECTRODES; EXOCYTOSIS; MICROSCOPY; ELECTRODES;
D O I
10.5796/electrochemistry.84.364
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We here report the electrochemical imaging of cell adhesion using a large-scale integration (LSI)-based amperometric device, called a Bio-LSI device. The device consists of 400 sensor electrodes arranged with a pitch of 250 pm. The device surface was modified with collagen to assist in the culture of MCF-7 cells and promote their adhesion. The cells disturb the electrochemical reaction of redox mediators, allowing the electrochemical signal to be used to evaluate cell adhesion at the single-cell level. This approach was applied to a cell detachment test. The results show that the Bio-LSI device is a promising tool for single-cell analysis. (C) The Electrochemical Society of Japan, All rights reserved.
引用
收藏
页码:364 / 367
页数:4
相关论文
共 50 条
  • [21] Benchmarking principal component analysis for large-scale single-cell RNA-sequencing
    Tsuyuzaki, Koki
    Sato, Hiroyuki
    Sato, Kenta
    Nikaido, Itoshi
    GENOME BIOLOGY, 2020, 21 (01)
  • [22] SCEMENT: scalable and memory efficient integration of large-scale single-cell RNA-sequencing data
    Chockalingam, Sriram P.
    Aluru, Maneesha
    Aluru, Srinivas
    BIOINFORMATICS, 2025, 41 (02)
  • [23] Protocol for immunofluorescence staining and large-scale analysis to quantify microglial cell morphology at single-cell resolution in mice
    Mogensen, Frida Lind-Holm
    Ameli, Corrado
    Skupin, Alexander
    Michelucci, Alessandro
    STAR PROTOCOLS, 2024, 5 (04):
  • [24] FIRM: Flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets
    Ming, Jingsi
    Lin, Zhixiang
    Zhao, Jia
    Wan, Xiang
    Yang, Can
    Wu, Angela Ruohao
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [25] Feedback mode-based electrochemical imaging of conductivity and topography for large substrate surfaces using an LSI-based amperometric chip device with 400 sensors
    Kanno, Yusuke
    Ino, Kosuke
    Inoue, Kumi Y.
    Sen, Mustafa
    Suda, Atsushi
    Kunikata, Ryota
    Matsudaira, Masahki
    Abe, Hiroya
    Li, Chen-Zhong
    Shiku, Hitoshi
    Matsue, Tomokazu
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 741 : 109 - 113
  • [26] Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq
    Bo Li
    Joshua Gould
    Yiming Yang
    Siranush Sarkizova
    Marcin Tabaka
    Orr Ashenberg
    Yanay Rosen
    Michal Slyper
    Monika S. Kowalczyk
    Alexandra-Chloé Villani
    Timothy Tickle
    Nir Hacohen
    Orit Rozenblatt-Rosen
    Aviv Regev
    Nature Methods, 2020, 17 : 793 - 798
  • [27] Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq
    Li, Bo
    Gould, Joshua
    Yang, Yiming
    Sarkizova, Siranush
    Tabaka, Marcin
    Ashenberg, Orr
    Rosen, Yanay
    Slyper, Michal
    Kowalczyk, Monika S.
    Villani, Alexandra-Chloe
    Tickle, Timothy
    Hacohen, Nir
    Rozenblatt-Rosen, Orit
    Regev, Aviv
    NATURE METHODS, 2020, 17 (08) : 793 - +
  • [28] Single-cell assignment using multiple-adversarial domain adaptation network with large-scale references
    Ren, Pengfei
    Shi, Xiaoying
    Yu, Zhiguang
    Dong, Xin
    Ding, Xuanxin
    Wang, Jin
    Sun, Liangdong
    Yan, Yilv
    Hu, Junjie
    Zhang, Peng
    Chen, Qianming
    Zhang, Jing
    Li, Taiwen
    Wang, Chenfei
    CELL REPORTS METHODS, 2023, 3 (09):
  • [29] Identification of genetic variants that impact gene coexpression relationships using large-scale single-cell data
    Li, Shuang
    Schimid, Katharina
    de Vries, Dylan
    Korshevniuk, Maryna
    Swertz, Morris
    Westra, Harm-Jan
    van der Wijst, Monique
    Heinig, Matthias
    Franke, Lude
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 15 - 16
  • [30] Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data
    Dhapola, Parashar
    Rodhe, Johan
    Olofzon, Rasmus
    Bonald, Thomas
    Erlandsson, Eva
    Soneji, Shamit
    Karlsson, Goran
    NATURE COMMUNICATIONS, 2022, 13 (01)