Automatic extraction of geometric lip features with application to multi-modal speaker identification

被引:6
|
作者
Arsic, Ivana [1 ]
Vilagut, Roger [1 ]
Thiran, Jean-Philippe [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Inst, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1109/ICME.2006.262594
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider the problem of automatic extraction of the geometric lip features for the purposes of multi-modal speaker identification. The use of visual information from the mouth region can be of great importance for improving the speaker identification system performance in noisy conditions. We propose a novel method for automated lip features extraction that utilizes color space transformation and a fuzzy-based c-means clustering technique. Using the obtained visual cues closed-set audio-visual speaker identification experiments are performed on the CUAVE database, [1] showing promising results.
引用
收藏
页码:161 / +
页数:2
相关论文
共 50 条
  • [41] A New Method for Breast Cancer Identification Using Multi-modal Features in Quaternionic Form
    Apostolopoulos, G.
    Koutras, A.
    Christoyianni, I.
    Dermatas, E.
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 56 - 60
  • [42] Personal identification based on skin texture features from the forearm and multi-modal imaging
    Bianconi, F.
    Chirikhina, E.
    Smeraldi, F.
    Bontozoglou, C.
    Xiao, P.
    [J]. SKIN RESEARCH AND TECHNOLOGY, 2017, 23 (03) : 392 - 398
  • [43] MULTI-MODAL SPEAKER DIARIZATION OF REAL-WORLD MEETINGS USING COMPRESSED-DOMAIN VIDEO FEATURES
    Friedland, Gerald
    Hung, Hayley
    Yeo, Chuohao
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 4069 - +
  • [44] Identity Extraction from Clusters of Multi-modal Observations
    Hruz, Marek
    Salajka, Petr
    Gruber, Ivan
    Hlavac, Miroslav
    [J]. SPEECH AND COMPUTER, SPECOM 2019, 2019, 11658 : 171 - 179
  • [45] Multi-Modal Multi-Task Learning for Automatic Dietary Assessment
    Liu, Qi
    Zhang, Yue
    Liu, Zhenguang
    Yuan, Ye
    Cheng, Li
    Zimmermann, Roger
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2347 - 2354
  • [46] Implementation of multi-modal interface for VR application
    Machidori, Yushi
    Takayama, Ko
    Sugita, Kaoru
    [J]. 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2019), 2019, : 370 - 373
  • [47] Multi-Modal Order Fulfillment: Concept and Application
    Lawson, Benn
    Pil, Frits K.
    Holweg, Matthias
    [J]. PRODUCTION AND OPERATIONS MANAGEMENT, 2018, 27 (02) : 269 - 284
  • [48] SnowWatch: A Multi-modal Citizen Science Application
    Fedorov, Roman
    Fraternali, Piero
    Pasini, Chiara
    [J]. WEB ENGINEERING (ICWE 2016), 2016, 9671 : 538 - 541
  • [49] Multi-Modal CTL: Completeness, complexity, and an application
    Ågotnes T.
    Van Der Hoek W.
    Rodríguez-Aguilar J.A.
    Sierra C.
    Wooldridge M.
    [J]. Studia Logica, 2009, 92 (1) : 1 - 26
  • [50] Multi-modal locomotion: from animal to application
    Lock, R. J.
    Burgess, S. C.
    Vaidyanathan, R.
    [J]. BIOINSPIRATION & BIOMIMETICS, 2014, 9 (01)