A neural network-assisted open boundary molecular dynamics simulation method

被引:2
|
作者
Floyd, J. E. [1 ]
Lukes, J. R. [1 ]
机构
[1] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2022年 / 156卷 / 18期
基金
美国国家科学基金会;
关键词
Kinetics - Kinetic energy - Potential energy - Computational chemistry;
D O I
10.1063/5.0083198
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A neural network-assisted molecular dynamics method is developed to reduce the computational cost of open boundary simulations. Particle influxes and neural network-derived forces are applied at the boundaries of an open domain consisting of explicitly modeled Lennard-Jones atoms in order to represent the effects of the unmodeled surrounding fluid. Canonical ensemble simulations with periodic boundaries are used to train the neural network and to sample boundary fluxes. The method, as implemented in the LAMMPS, yields temperature, kinetic energy, potential energy, and pressure values within 2.5% of those calculated using periodic molecular dynamics and runs two orders of magnitude faster than a comparable grand canonical molecular dynamics system. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Neural network-assisted meta-router for fiber mode and polarization demultiplexing
    Zhao, Yu
    Wang, Huijiao
    Huang, Tian
    Guan, Zhiqiang
    Li, Zile
    Yu, Lei
    Yu, Shaohua
    Zheng, Guoxing
    NANOPHOTONICS, 2024, 13 (22) : 4181 - 4189
  • [42] Simulation of surface and grain boundary properties of alumina by molecular dynamics method
    Suzuki, Hiroshi
    Matsubara, Hideaki
    Kishino, Jun
    Kondoh, Toshiharu
    Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, 1998, 106 (1240): : 1215 - 1222
  • [43] Simulation of surface and grain boundary properties of alumina by molecular dynamics method
    Suzuki, H
    Matsubara, H
    Kishino, J
    Kondoh, T
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1998, 106 (12) : 1215 - 1222
  • [44] Molecular-dynamics method for the simulation of grain-boundary migration
    Schonfelder, B
    Wolf, D
    Phillpot, SR
    Furtkamp, M
    INTERFACE SCIENCE, 1997, 5 (04) : 245 - 262
  • [45] Molecular-dynamics method for the simulation of grain-boundary migration
    Schönfelder, B
    Wolf, D
    Phillpot, SR
    Keblinski, P
    Furtkamp, M
    GRAIN GROWTH IN POLYCRYSTALLINE MATERIALS III, 1998, : 109 - 118
  • [46] Understanding Humidity-Enhanced Adhesion of Geckos: Deep Neural Network-Assisted Multi-Scale Molecular Modeling
    Materzok, Tobias
    Eslami, Hossein
    Gorb, Stanislav N.
    Mueller-Plathe, Florian
    SMALL, 2023, 19 (22)
  • [47] An Efficient Method for Antenna Design Based on a Self-Adaptive Bayesian Neural Network-Assisted Global Optimization Technique
    Liu, Yushi
    Liu, Bo
    Ur-Rehman, Masood
    Imran, Muhammad Ali
    Akinsolu, Mobayode O.
    Excell, Peter
    Hua, Qiang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (12) : 11375 - 11388
  • [48] Neural network-assisted variable structure control scheme for control of a flexible manipulator arm
    Sundareshan, MK
    Askew, C
    AUTOMATICA, 1997, 33 (09) : 1699 - 1710
  • [49] Deep Neural Network-Assisted Terahertz Metasurface Sensors for the Detection of Lung Cancer Biomarkers
    Chen, Jie
    Hu, Fangrong
    Ma, Xiaoya
    Yang, Mo
    Lin, Shangjun
    Su, An
    IEEE SENSORS JOURNAL, 2024, 24 (10) : 15698 - 15705
  • [50] Optimization of a Solid Rocket Motor Design Through Neural Network-Assisted Performance Prediction
    Lee, Hyung Suk
    Ko, Seung Cheol
    Kwon, Soon Wook
    Lee, Joon Sang
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (06) : 8769 - 8781