A neural network-assisted open boundary molecular dynamics simulation method

被引:2
|
作者
Floyd, J. E. [1 ]
Lukes, J. R. [1 ]
机构
[1] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2022年 / 156卷 / 18期
基金
美国国家科学基金会;
关键词
Kinetics - Kinetic energy - Potential energy - Computational chemistry;
D O I
10.1063/5.0083198
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A neural network-assisted molecular dynamics method is developed to reduce the computational cost of open boundary simulations. Particle influxes and neural network-derived forces are applied at the boundaries of an open domain consisting of explicitly modeled Lennard-Jones atoms in order to represent the effects of the unmodeled surrounding fluid. Canonical ensemble simulations with periodic boundaries are used to train the neural network and to sample boundary fluxes. The method, as implemented in the LAMMPS, yields temperature, kinetic energy, potential energy, and pressure values within 2.5% of those calculated using periodic molecular dynamics and runs two orders of magnitude faster than a comparable grand canonical molecular dynamics system. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Convolutional Neural Network-Assisted Least-Squares Migration
    Wu, Boming
    Hu, Hao
    Zhou, Hua-Wei
    SURVEYS IN GEOPHYSICS, 2023, 44 (04) : 1107 - 1124
  • [22] Convolutional Neural Network-Assisted Least-Squares Migration
    Boming Wu
    Hao Hu
    Hua-Wei Zhou
    Surveys in Geophysics, 2023, 44 : 1107 - 1124
  • [23] Open boundary molecular dynamics
    Delgado-Buscalioni, R.
    Sablic, J.
    Praprotnik, M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (12): : 2331 - 2349
  • [24] Open boundary molecular dynamics
    R. Delgado-Buscalioni
    J. Sablić
    M. Praprotnik
    The European Physical Journal Special Topics, 2015, 224 : 2331 - 2349
  • [25] Deep Regression Network-Assisted Efficient Streamline Generation Method
    Lee, Joong-Youn
    Park, Jinah
    IEEE ACCESS, 2021, 9 : 111704 - 111717
  • [26] Convolutional neural network-assisted design and validation of terahertz metamaterial sensor
    Chen, Shunrong
    Zhao, Chunyue
    Wang, Wei
    Yang, Songyuan
    Zhou, Chengjiang
    MATERIALS & DESIGN, 2025, 253
  • [27] MULTI-SCALE TOPOLOGY OPTIMIZATION WITH NEURAL NETWORK-ASSISTED OPTIMIZER
    Rastegarzadeh, Sina
    Wang, Jun
    Huang, Jida
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 2, 2022,
  • [28] A neural network-assisted finite element analysis of cold flat rolling
    Gudur, P. P.
    Dixit, U. S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2008, 21 (01) : 43 - 52
  • [29] Neural Network-Assisted Magnetic Moment Measurement Using an Atomic Magnetometer
    Wang, Zhongyu
    Lu, Jixi
    Liu, Ziao
    Li, Xiaoyu
    Sheng, Jianwei
    Li, Jianli
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [30] Neural network-assisted routing strategy selection for optical datacenter networks
    Hong, Yuanyuan
    Hong, Xuezhi
    Chen, Jiajia
    2020 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP) AND INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS (IPOC), 2020,