Finite-Dimensional Gaussian Approximation with Linear Inequality Constraints

被引:46
|
作者
Lopez-Lopera, Andres F. [1 ]
Bachoc, Francois [2 ]
Durrande, Nicolas [1 ,3 ]
Roustant, Olivier [1 ]
机构
[1] Univ Clermont Auvergne, Inst Henri Fayol, CNRS, UMR 6158,LIMOS, F-42023 St Etienne, France
[2] Univ Paul Sabatier, Inst Math Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
[3] PROWLER Io, 66-68 Hills Rd, Cambridge CB2 1LA, England
来源
关键词
asymptotic analysis; Gaussian processes regression; inference under constraints; MCMC;
D O I
10.1137/17M1153157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Introducing inequality constraints in Gaussian processes can lead to more realistic uncertainties in learning a great variety of real-world problems. We consider the finite-dimensional Gaussian model from Maatouk and Bay [Math. Geosci., 49 (2017), pp. 557-582] which can satisfy inequality conditions everywhere (either boundedness, monotonicity, or convexity). Our contributions are threefold. First, we extend their approach in order to deal with sets of linear inequalities. Second, we explore different Markov chain Monte Carlo (MCMC) methods to approximate the posterior distribution. Third, we investigate theoretical and numerical properties of a constrained likelihood for covariance parameter estimation. According to experiments on both artificial and real data, our framework together with a Hamiltonian Monte Carlo sampler provides efficient results on both data fitting and uncertainty quantification.
引用
收藏
页码:1224 / 1255
页数:32
相关论文
共 50 条
  • [41] Twisted K-Theory and Finite-Dimensional Approximation
    Kiyonori Gomi
    Communications in Mathematical Physics, 2010, 294 : 863 - 889
  • [42] A finite-dimensional approximation method in optimal control theory
    Arutyunov, AV
    Vinter, RB
    DIFFERENTIAL EQUATIONS, 2003, 39 (11) : 1519 - 1528
  • [43] Extrema of linear functionals on finite-dimensional spaces
    Demidovich, VB
    Magaril-il'yaev, GG
    Tikhomirov, VM
    RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (06) : 1143 - 1145
  • [44] Bi-Lipschitz approximation by finite-dimensional imbeddings
    Karin Usadi Katz
    Mikhail G. Katz
    Geometriae Dedicata, 2011, 150 : 131 - 136
  • [45] A Finite-Dimensional Approximation for Pricing Moving Average Options
    Bernhart, Marie
    Tankov, Peter
    Warin, Xavier
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 989 - 1013
  • [46] Nonnegative control of finite-dimensional linear systems
    Loheac, Jerome
    Trelat, Emmanuel
    Zuazua, Enrique
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (02): : 301 - 346
  • [47] Bi-Lipschitz approximation by finite-dimensional imbeddings
    Katz, Karin Usadi
    Katz, Mikhail G.
    GEOMETRIAE DEDICATA, 2011, 150 (01) : 131 - 136
  • [49] On the control of finite-dimensional mechanical systems with unilateral constraints
    Brogliato, B
    Niculescu, SI
    Orhant, P
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (02) : 200 - 215
  • [50] Design of finite-dimensional controllers for infinite-dimensional systems by approximation
    Morris, K.A.
    Journal of Mathematical Systems, Estimation, and Control, 1996, 6 (02): : 151 - 180