Nonnegative control of finite-dimensional linear systems

被引:4
|
作者
Loheac, Jerome [1 ]
Trelat, Emmanuel [2 ]
Zuazua, Enrique [3 ,4 ,5 ,6 ]
机构
[1] Univ Lorraine, CNRS, GRAN, F-54000 Nancy, France
[2] Univ Paris, Sorbonne Univ, CNRS, INRIA,Lab Jacques Louis Lions LJLL, F-75005 Paris, France
[3] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Appl Anal, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
[5] Univ Deusto, Fdn Deusto, Computat Math, Bilbao 48007, Basque Country, Spain
[6] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Minimal time; Nonnegative control; Dirac impulse;
D O I
10.1016/j.anihpc.2020.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the controllability problem for finite-dimensional linear autonomous control systems with nonnegative controls. Despite the Kalman condition, the unilateral nonnegativity control constraint may cause a positive minimal controllability time. When this happens, we prove that, if the matrix of the system has a real eigenvalue, then there is a minimal time control in the space of Radon measures, which consists of a finite sum of Dirac impulses. When all eigenvalues are real, this control is unique and the number of impulses is less than half the dimension of the space. We also focus on the control system corresponding to a finite-difference spatial discretization of the one-dimensional heat equation with Dirichlet boundary controls, and we provide numerical simulations. (C) 2020 L'Association Publications de l'Institut Henri Poincare. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:301 / 346
页数:46
相关论文
共 50 条