Nonnegative control of finite-dimensional linear systems

被引:4
|
作者
Loheac, Jerome [1 ]
Trelat, Emmanuel [2 ]
Zuazua, Enrique [3 ,4 ,5 ,6 ]
机构
[1] Univ Lorraine, CNRS, GRAN, F-54000 Nancy, France
[2] Univ Paris, Sorbonne Univ, CNRS, INRIA,Lab Jacques Louis Lions LJLL, F-75005 Paris, France
[3] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Appl Anal, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
[5] Univ Deusto, Fdn Deusto, Computat Math, Bilbao 48007, Basque Country, Spain
[6] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Minimal time; Nonnegative control; Dirac impulse;
D O I
10.1016/j.anihpc.2020.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the controllability problem for finite-dimensional linear autonomous control systems with nonnegative controls. Despite the Kalman condition, the unilateral nonnegativity control constraint may cause a positive minimal controllability time. When this happens, we prove that, if the matrix of the system has a real eigenvalue, then there is a minimal time control in the space of Radon measures, which consists of a finite sum of Dirac impulses. When all eigenvalues are real, this control is unique and the number of impulses is less than half the dimension of the space. We also focus on the control system corresponding to a finite-difference spatial discretization of the one-dimensional heat equation with Dirichlet boundary controls, and we provide numerical simulations. (C) 2020 L'Association Publications de l'Institut Henri Poincare. Published by Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:301 / 346
页数:46
相关论文
共 50 条
  • [31] Linear operators with finite-dimensional kernels
    Terent'ev, A. G.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2012, (01): : 134 - 135
  • [32] H∞ control of diffusion systems by using a finite-dimensional controller
    Sano, H
    Sakawa, Y
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) : 409 - 428
  • [33] Finite-dimensional H∞ control of flexible beam equation systems
    Sano, Hideki
    IMA Journal of Mathematical Control and Information, 2002, 19 (04) : 477 - 491
  • [34] FINITE-DIMENSIONAL QUASI-LINEAR RISK-SENSITIVE CONTROL
    AGGOUN, L
    BENSOUSSAN, A
    ELLIOTT, RJ
    MOORE, JB
    SYSTEMS & CONTROL LETTERS, 1995, 25 (02) : 151 - 157
  • [35] FINITE-DIMENSIONAL CONTROLLERS FOR ROBUST REGULATION OF BOUNDARY CONTROL SYSTEMS
    Phan, Duy
    Paunonen, Lassi
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2021, 11 (01) : 95 - 117
  • [36] Finite-dimensional H∞ control of semilinear distributed parameter systems
    Sano, H
    NONLINEAR CONTROL SYSTEMS DESIGN 1998, VOLS 1& 2, 1998, : 173 - 178
  • [37] Exponential stabilisability of finite-dimensional linear systems with limited data rates
    Nair, GN
    Evans, RJ
    AUTOMATICA, 2003, 39 (04) : 585 - 593
  • [38] Periodic controllers for finite-dimensional linear time-invariant systems
    Er, M.J.
    International Journal of Systems Science, 1995, 26 (10): : 1813 - 1822
  • [39] An implicit Lyapunov control for finite-dimensional closed quantum systems
    Zhao, Shouwei
    Lin, Hai
    Sun, Jitao
    Xue, Zhengui
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (11) : 1212 - 1228
  • [40] Multiresolution finite-dimensional adaptive control of distributed parameter systems
    Kim, Jun Y.
    Bentsman, Joseph
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2805 - +