Investigation of early drying shrinkage of ultrahigh-performance concrete under windy conditions

被引:7
|
作者
Du, Yang [1 ]
Zhang, Lifeng [1 ]
Ruan, Shaoqin [1 ]
Qian, Xiaoqian [1 ]
Qian, Kuangliang [1 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Peoples R China
来源
关键词
UHPC; Early shrinkage; Wind speed; Hydration degree; Critical pore; PORE-SIZE DISTRIBUTION; EARLY-AGE SHRINKAGE; AUTOGENOUS SHRINKAGE; SILICA FUME; SUPERABSORBENT POLYMER; CEMENTITIOUS MATERIALS; MECHANICAL-PROPERTIES; HYDRATION MECHANISMS; STRENGTH; WATER;
D O I
10.1016/j.jobe.2022.104852
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Environmental factors (e.g., wind) may deteriorate the volume stability of ultrahigh-performance concrete (UHPC), which undermines structural safety. Therefore, in this study, the effects of wind speeds (WSs) on the early shrinkage (e.g., autogenous/drying shrinkage) of UHPC were investi-gated, and the shrinkage behaviors were further explained from the evaporation and pore structure distributions of UHPC. The results highlighted the effects of silica fume (SF) on the early shrinkage of UHPC under windy conditions, however, water evaporation should be combined with pore size distributions to obtain critical pores of UHPC. At the same time, based on the critical pore diameter, different early drying shrinkage developments were observed in UHPC under normal drying conditions and at a WS of 0.25 m/s. Further, in some cases, drying shrinkage may play a more important role that governs the early total shrinkage of UHPC than autogenous shrinkage, which complements current theories of shrinkage.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Investigation of Five Synthetic Fibers as Potential Replacements of Steel Fibers in Ultrahigh-Performance Concrete
    Karim, Rizwan
    Shafei, Behrouz
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2022, 34 (07)
  • [22] Effect of Temperature on Thermal Properties of Ultrahigh-Performance Concrete
    Kodur, Venkatesh
    Banerji, Srishti
    Solhmirzaei, Roya
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (08)
  • [23] Flexural Behavior and Design of Ultrahigh-Performance Concrete Beams
    El-Helou, Rafic G.
    Graybeal, Benjamin A.
    JOURNAL OF STRUCTURAL ENGINEERING, 2022, 148 (04)
  • [24] Spalling phenomenon and fire resistance of ultrahigh-performance concrete
    Hernandez-Figueirido, D.
    Reig, L.
    Melchor-Eixea, A.
    Roig-Flores, M.
    Albero, V.
    Piquer, A.
    Pitarch, A. M.
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 443
  • [25] Bond Performance between Ultrahigh-Performance Concrete and Normal-Strength Concrete
    Munoz, Miguel A. Carbonell
    Harris, Devin K.
    Ahlborn, Theresa M.
    Froster, David C.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2014, 26 (08)
  • [26] Prediction of Early Compressive Strength of Ultrahigh-Performance Concrete Using Machine Learning Methods
    Zhu, Hailiang
    Wu, Xiong
    Luo, Yaoling
    Jia, Yue
    Wang, Chong
    Fang, Zheng
    Zhuang, Xiaoying
    Zhou, Shuai
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2023, 20 (08)
  • [27] Seismically Resilient Hybrid Precast Concrete Piers with Ultrahigh-Performance Concrete
    Yang, Cancan
    Okumus, Pinar
    JOURNAL OF BRIDGE ENGINEERING, 2021, 26 (06)
  • [28] Mechanical Strength and Microstructure of Ultrahigh-Performance Concrete under Long-Term Autoclaving
    Tian, Hongwei
    Stephan, Dietmar
    Lehmann, Christian
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (02)
  • [29] Flexural Performance of Ultrahigh-Performance Concrete Developed Using Local Materials
    Visage, Eric T.
    Weldon, Brad D.
    Jauregui, David V.
    Newtson, Craig M.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2019, 31 (05)
  • [30] Study on the Flexural Performance of Ultrahigh-Performance Concrete-Normal Concrete Composite Slabs
    Sun, Zizhou
    Li, Xianjing
    Liu, Chao
    MATERIALS, 2024, 17 (18)