A Shrinkage-Thresholding Metropolis Adjusted Langevin Algorithm for Bayesian Variable Selection

被引:12
|
作者
Schreck, Amandine [1 ,2 ]
Fort, Gersende [1 ]
Le Corff, Sylvain [3 ]
Moulines, Eric [1 ]
机构
[1] Univ Paris Saclay, LTCI, CNRS, Telecom ParisTech, F-75013 Paris, France
[2] Lycee Maximilien Sorre, F-94230 Cachan, France
[3] Univ Paris Saclay, Univ Paris Sud, Lab Mathemat Orsay, CNRS, F-91405 Orsay, France
关键词
Bayesian variable selection; Metropolis Adjusted Langevin Algorithm (MALA); Markov chain Monte Carlo (MCMC); proximal operators; sparsity; MONTE-CARLO; REGRESSION; MODEL;
D O I
10.1109/JSTSP.2015.2496546
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a new Markov Chain Monte Carlo method for Bayesian variable selection in high dimensional settings. The algorithm is a Hastings-Metropolis sampler with a proposal mechanism which combines a Metropolis Adjusted Langevin (MALA) step to propose local moves associated with a shrinkage-thresholding step allowing to propose new models. The geometric ergodicity of this new trans-dimensional Markov Chain Monte Carlo sampler is established. An extensive numerical experiment, on simulated and real data, is presented to illustrate the performance of the proposed algorithm in comparison with some more classical trans-dimensional algorithms.
引用
收藏
页码:366 / 375
页数:10
相关论文
共 50 条
  • [31] Deblending of Simultaneous-source Seismic Data using Fast Iterative Shrinkage-thresholding Algorithm with Firm-thresholding
    Shan Qu
    Hui Zhou
    Renwu Liu
    Yangkang Chen
    Shaohuan Zu
    Sa Yu
    Jiang Yuan
    Yahui Yang
    [J]. Acta Geophysica, 2016, 64 : 1064 - 1092
  • [32] Deblending of Simultaneous-source Seismic Data using Fast Iterative Shrinkage-thresholding Algorithm with Firm-thresholding
    Qu, Shan
    Zhou, Hui
    Liu, Renwu
    Chen, Yangkang
    Zu, Shaohuan
    Yu, Sa
    Yuan, Jiang
    Yang, Yahui
    [J]. ACTA GEOPHYSICA, 2016, 64 (04): : 1064 - 1092
  • [33] Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm
    Zhao, Fengjun
    Qu, Xiaochao
    Zhang, Xin
    Poon, Ting-Chung
    Kim, Taegeun
    Kim, You Seok
    Liang, Jimin
    [J]. OPTICS EXPRESS, 2012, 20 (06): : 5942 - 5954
  • [34] Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm
    Guo Q.
    Teng Y.
    Tong C.
    Li D.
    Wang X.
    [J]. Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2020, 37 (05): : 855 - 862
  • [35] Comparative Study of CUDA GPU Implementations in Python With the Fast Iterative Shrinkage-Thresholding Algorithm for LASSO
    Cho, Younsang
    Kim, Jaeoh
    Yu, Donghyeon
    [J]. IEEE Access, 2022, 10 : 53324 - 53343
  • [36] The variant of the iterative shrinkage-thresholding algorithm for minimization of the l1 over l∞ norms
    Wang, Jun
    Ma, Qiang
    [J]. SIGNAL PROCESSING, 2023, 211
  • [37] Compressive sensing reconstruction for vibration signals based on the improved fast iterative shrinkage-thresholding algorithm
    Wang, Qiang
    Meng, Chen
    Ma, Weining
    Wang, Cheng
    Yu, Lei
    [J]. MEASUREMENT, 2019, 142 : 68 - 78
  • [38] An extension of fast iterative shrinkage-thresholding algorithm to Riemannian optimization for sparse principal component analysis
    Huang, Wen
    Wei, Ke
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (01)
  • [39] On geometric convergence for the Metropolis-adjusted Langevin algorithm under simple conditions
    Oliviero-Durmus, Alain
    Moulines, Eric
    [J]. BIOMETRIKA, 2024, 111 (01) : 273 - 289
  • [40] Seismic data denoising via double sparsity dictionary and fast iterative shrinkage-thresholding algorithm
    Zhang Liang
    Han LiGuo
    Fang JinWei
    Zhang Pan
    Liu ZhengGuang
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2019, 62 (07): : 2671 - 2683