Deblending of Simultaneous-source Seismic Data using Fast Iterative Shrinkage-thresholding Algorithm with Firm-thresholding

被引:51
|
作者
Qu, Shan [1 ]
Zhou, Hui [1 ]
Liu, Renwu [2 ]
Chen, Yangkang [3 ]
Zu, Shaohuan [1 ]
Yu, Sa [1 ]
Yuan, Jiang [1 ]
Yang, Yahui [1 ]
机构
[1] China Univ Petr, Key Lab Geophys Explorat, State Key Lab Petr Resources & Prospecting, Dept Geophys,CNPC, Beijing, Peoples R China
[2] CNPC, Dagang Geophys Prospecting Branch, BGP, Tianjin, Peoples R China
[3] Univ Texas Austin, Austin, TX 78712 USA
来源
ACTA GEOPHYSICA | 2016年 / 64卷 / 04期
基金
中国国家自然科学基金;
关键词
deblending; regularization; simultaneous-source; firm-thresholding; LINEAR INVERSE PROBLEMS; BLENDED DATA; MINIMIZATION; WAVESHRINK; SEPARATION; SPARSE; NOISE;
D O I
10.1515/acgeo-2016-0043
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, an improved algorithm is proposed to separate blended seismic data. We formulate the deblending problem as a regularization problem in both common receiver domain and frequency domain. It is suitable for different kinds of coding methods such as random time delay discussed in this paper. Two basic approximation frames, which are iterative shrinkage-thresholding algorithm (ISTA) and fast iterative shrinkage-thresholding algorithm (FISTA), are compared. We also derive the Lipschitz constant used in approximation frames. In order to achieve a faster convergence and higher accuracy, we propose to use firm-thresholding function as the thresholding function in ISTA and FISTA. Two synthetic blended examples demonstrate that the performances of four kinds of algorithms (ISTA with soft-and firm-thresholding, FISTA with soft-and firm-thresholding) are all effective, and furthermore FISTA with a firm-thresholding operator exhibits the most robust behavior. Finally, we show one numerically blended field data example processed by FISTA with firm-thresholding function.
引用
收藏
页码:1064 / 1092
页数:29
相关论文
共 50 条
  • [1] Deblending of Simultaneous-source Seismic Data using Fast Iterative Shrinkage-thresholding Algorithm with Firm-thresholding
    Shan Qu
    Hui Zhou
    Renwu Liu
    Yangkang Chen
    Shaohuan Zu
    Sa Yu
    Jiang Yuan
    Yahui Yang
    [J]. Acta Geophysica, 2016, 64 : 1064 - 1092
  • [2] Sparse seismic reflectivity inversion using an adaptive fast iterative shrinkage-thresholding algorithm
    Li, Chuanhui
    Liu, Xuewei
    [J]. GEOPHYSICAL PROSPECTING, 2022, 70 (06) : 1003 - 1015
  • [3] Deblending of simultaneous-source data using iterative seislet frame thresholding based on a robust slope estimation
    Zhou, Yatong
    Han, Chunying
    Chi, Yue
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2018, 153 : 17 - 37
  • [4] Seismic data denoising via double sparsity dictionary and fast iterative shrinkage-thresholding algorithm
    Zhang Liang
    Han LiGuo
    Fang JinWei
    Zhang Pan
    Liu ZhengGuang
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2019, 62 (07): : 2671 - 2683
  • [5] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [6] Deblending of Simultaneous-Source Seismic Data Using Bregman Iterative Shaping
    Cheng, Jing-Wang
    Chen, Wei
    Zhou, Li
    Yang, Liuqing
    Liu, Qimin
    Zhang, Xiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 6208 - 6217
  • [7] Fast compressive beamforming with a modified fast iterative shrinkage-thresholding algorithm
    Wang, Shuo
    Chi, Cheng
    Jin, Shenglong
    Wang, Peng
    Liu, Jiyuan
    Huang, Haining
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (05): : 3437 - 3448
  • [8] Restoration for fiber bundle endomicroscopy using a fast iterative Shrinkage-Thresholding algorithm
    Liu, Jialin
    Zhou, Wei
    Xu, Baoteng
    Yang, Xibin
    Xiong, Daxi
    [J]. AOPC 2020: OPTICAL SPECTROSCOPY AND IMAGING; AND BIOMEDICAL OPTICS, 2020, 11566
  • [9] IMPROVING "FAST ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM": FASTER, SMARTER, AND GREEDIER
    Liang, Jingwei
    Luo, Tao
    Schonlieb, Carola-Bibiane
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1069 - A1091
  • [10] Multichannel predictive deconvolution based on the fast iterative shrinkage-thresholding algorithm
    Li, Zhong-Xiao
    Li, Zhen-Chun
    Lu, Wen-Kai
    [J]. GEOPHYSICS, 2016, 81 (01) : V17 - V30