Modeling Bias Error in 4D Flow MRI Velocity Measurements

被引:8
|
作者
Rothenberger, Sean M. [1 ]
Zhang, Jiacheng [2 ]
Brindise, Melissa C. [2 ]
Schnell, Susanne [3 ]
Markl, Michael [4 ]
Vlachos, Pavlos P. [1 ,2 ]
Rayz, Vitaliy L. [1 ,2 ]
机构
[1] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany
[4] Northwestern Univ, Feinberg Sch Med, Dept Radiol, Chicago, IL 60611 USA
基金
美国国家卫生研究院;
关键词
Magnetic resonance imaging; Velocity measurement; Measurement uncertainty; Mathematical models; Spatial resolution; Numerical models; Fluid flow measurement; Hemodynamics; magnetic resonance velocimetry (MRV); partial volume effects; phase contrast magnetic resonance imaging (PC-MRI); systematic error; WALL SHEAR-STRESS; PHASE-CONTRAST MRI; IN-VIVO; INTRACRANIAL ANEURYSMS; BLOOD-FLOW; PATTERNS; IMAGES;
D O I
10.1109/TMI.2022.3149421
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a model to estimate the bias error of 4D flow magnetic resonance imaging (MRI) velocity measurements. The local instantaneous bias error is defined as the difference between the expectation of the voxel's measured velocity and actual velocity at the voxel center. The model accounts for bias error introduced by the intra-voxel velocity distribution and partial volume (PV) effects. We assess the intra-voxel velocity distribution using a 3D Taylor Series expansion. PV effects and numerical errors are considered using a Richardson extrapolation. The model is applied to synthetic Womersley flow and in vitro and in vivo 4D flow MRI measurements in a cerebral aneurysm. The bias error model is valid for measurements with at least 3.75 voxels across the vessel diameter and signal-to-noise ratio greater than 5. All test cases exceeded this diameter to voxel size ratio with diameters, isotropic voxel sizes, and velocity ranging from 3-15mm, 0.5-1mm, and 0-60cm/s, respectively. The model accurately estimates the bias error in voxels not affected by PV effects. In PV voxels, the bias error is an order of magnitude higher, and the accuracy of the bias error estimation in PV voxels ranges from 67.3% to 108% relative to the actual bias error. The bias error estimated for in vivo measurements increased two-fold at systole compared to diastole in partial volume and non-partial volume voxels, suggesting the bias error varies over the cardiac cycle. This bias error model quantifies 4D flow MRI measurement accuracy and can help plan 4D flow MRI scans.
引用
收藏
页码:1802 / 1812
页数:11
相关论文
共 50 条
  • [1] 4D flow MRI velocity uncertainty quantification
    Rothenberger, Sean M.
    Zhang, Jiacheng
    Markl, Michael
    Craig, Bruce A.
    Vlachos, Pavlos P.
    Rayz, Vitaliy L.
    MAGNETIC RESONANCE IN MEDICINE, 2025, 93 (01) : 397 - 410
  • [2] 4D Flow with MRI
    Soulat, Gilles
    McCarthy, Patrick
    Markl, Michael
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 22, 2020, 22 : 103 - 126
  • [3] 4D flow MRI
    Markl, Michael
    Frydrychowicz, Alex
    Kozerke, Sebastian
    Hope, Mike
    Wieben, Oliver
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 36 (05) : 1015 - 1036
  • [4] A 4D chirp and Fourier velocity encoding method for MRI flow velocity measurement
    Lee, R
    Bottomley, PA
    RADIOLOGY, 1997, 205 : 886 - 886
  • [5] Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI
    Lantz, Jonas
    Gupta, Vikas
    Henriksson, Lilian
    Karlsson, Matts
    Persson, Anders
    Carlhall, Carl-Johan
    Ebbers, Tino
    RADIOLOGY, 2018, 289 (01) : 51 - 58
  • [6] Deep learning phase error correction for cerebrovascular 4D flow MRI
    Shanmukha Srinivas
    Evan Masutani
    Alexander Norbash
    Albert Hsiao
    Scientific Reports, 13
  • [7] Deep learning phase error correction for cerebrovascular 4D flow MRI
    Srinivas, Shanmukha
    Masutani, Evan
    Norbash, Alexander
    Hsiao, Albert
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] 4D flow imaging with MRI
    Stankovic, Zoran
    Allen, Bradley D.
    Garcia, Julio
    Jarvis, Kelly B.
    Markl, Michael
    CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2014, 4 (02) : 173 - 192
  • [9] 4D Flow Meets CT: Can It Compete with 4D Flow MRI?
    Schoepf, U. Joseph
    Varga-Szemes, Akos
    RADIOLOGY, 2018, 289 (01) : 59 - 60
  • [10] Quantitative Flow Measurements of Pelvic Venous Vasculature Using 4D Flow MRI
    Ghibes, Patrick
    Martirosian, Petros
    Groezinger, Gerd
    Plajer, David
    Estler, Arne
    Partovi, Sasan
    ACADEMIC RADIOLOGY, 2024, 31 (03) : 929 - 938