Large Scale Hard Sample Mining with Monte Carlo Tree Search

被引:5
|
作者
Canevet, Olivier [1 ,2 ]
Fleuret, Francois [1 ]
机构
[1] Idiap Res Inst, Martigny, Switzerland
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
VIEW;
D O I
10.1109/CVPR.2016.554
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate an efficient strategy to collect false positives from very large training sets in the context of object detection. Our approach scales up the standard bootstrapping procedure by using a hierarchical decomposition of an image collection which reflects the statistical regularity of the detector's responses. Based on that decomposition, our procedure uses a Monte Carlo Tree Search to prioritize the sampling toward sub-families of images which have been observed to be rich in false positives, while maintaining a fraction of the sampling toward unexplored sub-families of images. The resulting procedure increases substantially the proportion of false positive samples among the visited ones compared to a naive uniform sampling. We apply experimentally this new procedure to face detection with a collection of similar to 100,000 background images and to pedestrian detection with similar to 32,000 images. We show that for two standard detectors, the proposed strategy cuts the number of images to visit by half to obtain the same amount of false positives and the same final performance.
引用
收藏
页码:5128 / 5137
页数:10
相关论文
共 50 条
  • [41] Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search
    Bryant, Patrick
    Pozzati, Gabriele
    Zhu, Wensi
    Shenoy, Aditi
    Kundrotas, Petras
    Elofsson, Arne
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [42] Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search
    Patrick Bryant
    Gabriele Pozzati
    Wensi Zhu
    Aditi Shenoy
    Petras Kundrotas
    Arne Elofsson
    [J]. Nature Communications, 13
  • [43] Transpositions and Move Groups in Monte Carlo Tree Search
    Childs, Benjamin E.
    Brodeur, James H.
    Kocsis, Levente
    [J]. 2008 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND GAMES, 2008, : 389 - +
  • [44] Monte Carlo Tree Search Techniques in the Game of Kriegspiel
    Ciancarini, Paolo
    Favini, Gian Piero
    [J]. 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 474 - 479
  • [45] Monte Carlo Tree Search for Scheduling Activity Recognition
    Amer, Mohamed R.
    Todorovic, Sinisa
    Fern, Alan
    Zhu, Song-Chun
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1353 - 1360
  • [46] Multiple Policy Value Monte Carlo Tree Search
    Lan, Li-Cheng
    Li, Wei
    Wei, Ting-Han
    Wu, I-Chen
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4704 - 4710
  • [47] Monte Carlo Tree Search for Priced Timed Automata
    Jensen, Peter Gjol
    Kiviriga, Andrej
    Larsen, Kim Guldstrand
    Nyman, Ulrik
    Mijacika, Adriana
    Mortensen, Jeppe Hoiriis
    [J]. QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2022), 2022, 13479 : 381 - 398
  • [48] Scalability and Parallelization of Monte-Carlo Tree Search
    Bourki, Amine
    Chaslot, Guillaume
    Coulm, Matthieu
    Danjean, Vincent
    Doghmen, Hassen
    Hoock, Jean-Baptiste
    Herault, Thomas
    Rimmel, Arpad
    Teytaud, Fabien
    Teytaud, Olivier
    Vayssiere, Paul
    Yu, Ziqin
    [J]. COMPUTERS AND GAMES, 2011, 6515 : 48 - 58
  • [49] Using Local Regression in Monte Carlo Tree Search
    Randrianasolo, Arisoa S.
    Pyeatt, Larry D.
    [J]. 2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 500 - 503
  • [50] Monte-Carlo Tree Search for Policy Optimization
    Ma, Xiaobai
    Driggs-Campbell, Katherine
    Zhang, Zongzhang
    Kochenderfer, Mykel J.
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3116 - 3122