Large Scale Hard Sample Mining with Monte Carlo Tree Search

被引:5
|
作者
Canevet, Olivier [1 ,2 ]
Fleuret, Francois [1 ]
机构
[1] Idiap Res Inst, Martigny, Switzerland
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
VIEW;
D O I
10.1109/CVPR.2016.554
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate an efficient strategy to collect false positives from very large training sets in the context of object detection. Our approach scales up the standard bootstrapping procedure by using a hierarchical decomposition of an image collection which reflects the statistical regularity of the detector's responses. Based on that decomposition, our procedure uses a Monte Carlo Tree Search to prioritize the sampling toward sub-families of images which have been observed to be rich in false positives, while maintaining a fraction of the sampling toward unexplored sub-families of images. The resulting procedure increases substantially the proportion of false positive samples among the visited ones compared to a naive uniform sampling. We apply experimentally this new procedure to face detection with a collection of similar to 100,000 background images and to pedestrian detection with similar to 32,000 images. We show that for two standard detectors, the proposed strategy cuts the number of images to visit by half to obtain the same amount of false positives and the same final performance.
引用
收藏
页码:5128 / 5137
页数:10
相关论文
共 50 条
  • [31] Parallel Monte Carlo Tree Search on GPU
    Rocki, Kamil
    Suda, Reiji
    [J]. ELEVENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2011), 2011, 227 : 80 - 89
  • [32] Parallel Monte-Carlo Tree Search
    Chaslot, Guillaume M. J. -B.
    Winands, Mark H. M.
    van den Herik, H. Jaap
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 60 - +
  • [33] Monte-Carlo Tree Search Solver
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 25 - +
  • [34] Monte Carlo Tree Search in Lines of Action
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2010, 2 (04) : 239 - 250
  • [35] Time Management for Monte Carlo Tree Search
    Baier, Hendrik
    Winands, Mark H. M.
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2016, 8 (03) : 301 - 314
  • [36] Text Matching with Monte Carlo Tree Search
    He, Yixuan
    Tao, Shuchang
    Xu, Jun
    Guo, Jiafeng
    Lan, YanYan
    Cheng, Xueqi
    [J]. INFORMATION RETRIEVAL, CCIR 2018, 2018, 11168 : 41 - 52
  • [37] Monte Carlo Tree Search with Boltzmann Exploration
    Painter, Michael
    Baioumy, Mohamed
    Hawes, Nick
    Lacerda, Bruno
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [38] Classification of Monte Carlo Tree Search Variants
    McGuinness, Cameron
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 357 - 363
  • [39] Monte-Carlo Tree Search with Tree Shape Control
    Marchenko, Oleksandr I.
    Marchenko, Oleksii O.
    [J]. 2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), 2017, : 812 - 817
  • [40] A comparison of Monte Carlo tree search and rolling horizon optimization for large-scale dynamic resource allocation problems
    Bertsimas, Dimitris
    Griffith, J. Daniel
    Gupta, Vishal
    Kochenderfer, Mykel J.
    Misic, Velibor V.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 263 (02) : 664 - 678