Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field

被引:56
|
作者
Holtzman, Benjamin K. [1 ]
Pate, Arthur [1 ]
Paisley, John [2 ]
Waldhauser, Felix [1 ]
Repetto, Douglas [1 ]
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[2] Columbia Univ, Data Sci Inst, Dept Elect Engn, New York, NY 10025 USA
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 05期
关键词
AUDITORY DISPLAY; FLUID INJECTION; CLASSIFICATION; VELOCITY; IMPACT;
D O I
10.1126/sciadv.aao2929
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < M-L < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Machine learning to identify geologic factors associated with production in geothermal fields: a case-study using 3D geologic data, Brady geothermal field, Nevada
    Siler, Drew L.
    Pepin, Jeff D.
    Vesselinov, Velimir V.
    Mudunuru, Maruti K.
    Ahmmed, Bulbul
    GEOTHERMAL ENERGY, 2021, 9 (01)
  • [42] Intact cell mass spectrometry coupled with machine learning reveals minute changes induced by single gene silencing
    Pecinka, Lukas
    Moran, Lukas
    Kovacovicova, Petra
    Meloni, Francesca
    Havel, Josef
    Pivetta, Tiziana
    Vanhara, Petr
    HELIYON, 2024, 10 (09)
  • [43] Machine learning to identify geologic factors associated with production in geothermal fields: a case-study using 3D geologic data, Brady geothermal field, Nevada
    Drew L. Siler
    Jeff D. Pepin
    Velimir V. Vesselinov
    Maruti K. Mudunuru
    Bulbul Ahmmed
    Geothermal Energy, 9
  • [44] Interpretable machine learning guided by physical mechanisms reveals drivers of runoff under dynamic land use changes
    Wang, Shuli
    Liu, Yitian
    Wang, Wei
    Zhao, Guizhang
    Liang, Haotian
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 367
  • [45] Machine Learning-Based Compact Modeling of Silicon Cold Source Field-Effect Transistors
    Xu, Haoqing
    Gan, Weizhuo
    Guo, Shujin
    Zhang, Shengli
    Wu, Zhenhua
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2024, 23 : 615 - 621
  • [46] Assessing Machine Learning Techniques for Identifying Field Line Resonance Frequencies From Cross-Phase Spectra
    Foldes, Raffaello
    Del Corpo, Alfredo
    Pietropaolo, Ermanno
    Vellante, Massimo
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (05)
  • [47] A method for predicting the TOC in source rocks using a machine learning-based joint analysis of seismic multi-attributes
    Jia, Weihua
    Zong, Zhaoyun
    Qin, Dewen
    Lan, Tianjun
    JOURNAL OF APPLIED GEOPHYSICS, 2023, 216
  • [48] Enhancement of Bayesian Seismic Inversion Using Machine Learning and Sparse Spike Wavelet: Case Study Norne Field Dataset
    Monroe, Jorge A. Teruya
    de Figueiredo, Jose J. S.
    de J. S. Souza, Igor
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [49] Characterization of seismic-scale petrofacies variability in the Arbuckle Group using supervised machine learning: Wellington Field, Kansas
    Caf, A. B.
    Lubo-Robles, D.
    Marfurt, K. J.
    Bedle, H.
    Pranter, M. J.
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2024, 12 (03): : T341 - T354
  • [50] Machine learning reveals the effects of drivers on PM2.5 and CO2 based on ensemble source apportionment method
    Xu, Han
    Ge, Yi
    Zhang, Chun
    Wang, Zhenyu
    Xu, Bo
    Zhao, Huan
    Huang, Junbo
    Wang, Gen
    Liu, Jinxing
    Feng, Yinchang
    Shi, Guoliang
    ATMOSPHERIC RESEARCH, 2023, 295