Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field

被引:56
|
作者
Holtzman, Benjamin K. [1 ]
Pate, Arthur [1 ]
Paisley, John [2 ]
Waldhauser, Felix [1 ]
Repetto, Douglas [1 ]
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[2] Columbia Univ, Data Sci Inst, Dept Elect Engn, New York, NY 10025 USA
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 05期
关键词
AUDITORY DISPLAY; FLUID INJECTION; CLASSIFICATION; VELOCITY; IMPACT;
D O I
10.1126/sciadv.aao2929
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < M-L < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A machine learning surrogate modeling benchmark for temperature field reconstruction of heat source systems
    Xiaoqian CHEN
    Zhiqiang GONG
    Xiaoyu ZHAO
    Weien ZHOU
    Wen YAO
    Science China(Information Sciences), 2023, 66 (05) : 162 - 181
  • [32] A machine learning surrogate modeling benchmark for temperature field reconstruction of heat source systems
    Chen, Xiaoqian
    Gong, Zhiqiang
    Zhao, Xiaoyu
    Zhou, Weien
    Yao, Wen
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (05)
  • [33] Fourier transform infrared spectroscopic marker of glioblastoma obtained from machine learning and changes in the spectra
    Tolpa, Bartomiej
    Depciuch, Joanna
    Jakubczyk, Pawel
    Paja, Wieslaw
    Pancerz, Krzysztof
    Wosiak, Agnieszka
    Kaznowska, Ewa
    Gala-Bladzinska, Agnieszka
    Cebulski, Jozef
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2023, 42
  • [34] Spatio-temporal variations of shallow seismic velocity changes in Salton Sea Geothermal Field,California in response to large regional earthquakes and long-term geothermal activities
    Chengyuan Zhang
    Zhigang Peng
    Xiaoyan Liu
    Chenyu Li
    Earthquake Research Advances, 2023, 3 (02) : 15 - 23
  • [35] Enhancing seismic calving event identification in Svalbard through empirical matched field processing and machine learning
    Kohler, A.
    Myklebust, E. B.
    Maeland, S.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 230 (02) : 1305 - 1317
  • [36] Machine learning aided near-field acoustic holography based on equivalent source method
    Chaitanya, S. K.
    Sriraman, Siddharth
    Srinivasan, Srinath
    Srinivasan, K.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (02): : 940 - 951
  • [37] ON THE USE OF MACHINE LEARNING IN MICROPHONE ARRAY BEAMFORMING FOR FAR-FIELD SOUND SOURCE LOCALIZATION
    Salvati, Daniele
    Drioli, Carlo
    Foresti, Gian Luca
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [38] Excitonic Wave Function Reconstruction from Near-Field Spectra Using Machine Learning Techniques
    Zheng, Fulu
    Gao, Xing
    Eisfeld, Alexander
    PHYSICAL REVIEW LETTERS, 2019, 123 (16)
  • [39] Fault characterization in a postsalt reservoir interval, Jubarte Field (Campos Basin), using seismic attributes and machine learning
    Perico, Edimar
    Bedle, Heather
    Buist, Bobby
    Damasceno, Andrea Carvalho
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2023, 11 (02): : T199 - T214
  • [40] Seismic savanna: machine learning for classifying wildlife and behaviours using ground-based vibration field recordings
    Szenicer, Alexandre
    Reinwald, Michael
    Moseley, Ben
    Nissen-Meyer, Tarje
    Muteti, Zachary Mutinda
    Oduor, Sandy
    McDermott-Roberts, Alex
    Baydin, Atilim G.
    Mortimer, Beth
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2022, 8 (02) : 236 - 250