The kth lower multiexponent of tournament matrices

被引:0
|
作者
Liu, BL [1 ]
Yan, W [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the kth lower multiexponent f(n, k) for tournament matrices. It was proved that f(n, 3) = 2 if and only if n greater than or equal to 11. Thus the conjecture in [2] is disproved. Further we obtain a new sufficient condition for f(n, k) = 1.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [21] Matrices with maximum kth local exponent in the class of doubly symmetric primitive matrices
    Chen, Shexi
    Liu, Bolian
    DISCRETE MATHEMATICS, 2008, 308 (15) : 3386 - 3392
  • [22] The kth local exponent of doubly symmetric primitive matrices
    Chen, SX
    Liu, BL
    APPLIED MATHEMATICS LETTERS, 2006, 19 (04) : 392 - 397
  • [23] Selection in monotone matrices and computing kth nearest neighbors
    Agarwal, PK
    Sen, S
    JOURNAL OF ALGORITHMS, 1996, 20 (03) : 581 - 601
  • [24] Matrices over noncommutative rings as sums of kth powers
    Katre, S. A.
    Wadikar, Kshipra
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (11): : 2050 - 2058
  • [25] Generalized tournament matrices with the same principal minors
    Boussairi, A.
    Chaichaa, A.
    Chergui, B.
    Lakhlifi, S.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5433 - 5444
  • [26] Perron vector ordering for a subclass of tournament matrices
    Kirkland, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 291 (1-3) : 151 - 166
  • [27] SQUARE ROOTS OF DOUBLY REGULAR TOURNAMENT MATRICES
    Hacioglu, Ilhan
    Michael, T. S.
    Ozdemir, Serhat
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 28 : 79 - 82
  • [28] On the spectrum of random anti-symmetric and tournament matrices
    Sosoe, Philippe
    Smilansky, Uzy
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2016, 5 (03)
  • [29] A note on Perron vectors for almost regular tournament matrices
    Kirkland, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 266 : 43 - 47
  • [30] APPLICATIONS OF CIRCULANT MATRICES TO DETERMINANTS INVOLVING kTH POWER RESIDUES
    Wu, Hai-Liang
    Wang, Li-Yuan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (02) : 243 - 253