Matrices with maximum kth local exponent in the class of doubly symmetric primitive matrices

被引:3
|
作者
Chen, Shexi [1 ]
Liu, Bolian [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Computat Sci, Xiangtan 411201, Hunan, Peoples R China
[2] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
关键词
primitive matrix; primitive exponent; kth local exponent; extremal matrix; associated graph;
D O I
10.1016/j.disc.2007.06.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a primitive matrix of order n, and let k be an integer with 1 <= k <= n. The kth local exponent of A, is the smallest power of A for which there are k rows with no zero entry. We have recently obtained the maximum value for the kth local exponent of doubly symmetric primitive matrices of order n with 1 <= k <= n. In this paper, we use the graph theoretical method to give a complete characterization of those doubly symmetric primitive matrices whose kth local exponent actually attain the maximum value. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:3386 / 3392
页数:7
相关论文
共 50 条