Fractal diffusion in high temperature polymer electrolyte fuel cell membranes

被引:8
|
作者
Hopfenmueller, Bernhard [1 ]
Zorn, Reiner [2 ,3 ]
Holderer, Olaf [1 ]
Ivanova, Oxana [1 ]
Lehnert, Werner [4 ,5 ]
Lueke, Wiebke [4 ]
Ehlers, Georg [6 ]
Jalarvo, Niina [7 ,8 ]
Schneider, Gerald J. [9 ,10 ]
Monkenbusch, Michael [2 ,3 ]
Richter, Dieter [2 ,3 ]
机构
[1] Forschungszentrum Julich, Julich Ctr Neutron Sci, Heinz Maier Leibnitz Zentrum MLZ, D-85747 Garching, Germany
[2] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS 1, D-52425 Julich, Germany
[3] Inst Complex Syst ICS 1, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Energy & Climate Res IEK Electrochem Proc En, D-52425 Julich, Germany
[5] Rhein Westfal TH Aachen, Fac Mech Engn, Aachen, Germany
[6] Oak Ridge Natl Lab, Neutron Technol Div, Oak Ridge, TN 37831 USA
[7] Oak Ridge Natl Lab, Julich Ctr Neutron Sci, Oak Ridge, TN 37831 USA
[8] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[9] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA
[10] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2018年 / 148卷 / 20期
关键词
ELASTIC NEUTRON-SCATTERING; LOCALIZED TRANSLATIONAL MOTION; PHOSPHORIC-ACID; POLY(2,5-BENZIMIDAZOLE) MEMBRANES; RELAXATION FUNCTIONS; NAFION MEMBRANES; GAUSSIAN MODEL; WATER DYNAMICS; POLYBENZIMIDAZOLE; CONDUCTIVITY;
D O I
10.1063/1.5018717
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity, two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d(w) and the Hausdorff dimension d(f) have been determined on the length scales covered in the neutron scattering experiments. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Composite STEEK membranes for medium temperature polymer electrolyte fuel cells
    Carbone, A.
    Pedicini, R.
    Sacca, A.
    Gatto, I.
    Passalacqua, E.
    JOURNAL OF POWER SOURCES, 2008, 178 (02) : 661 - 666
  • [42] Physiochemical Characteristics of Solid Electrolyte Membranes for High-Temperature PEM Fuel Cell
    Haque, M. A.
    Sulong, A. B.
    Majlan, E. H.
    Loh, K. S.
    Husaini, T.
    Rosli, R.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (01): : 371 - 386
  • [43] Synergetic integration of a methanol steam reforming cell with a high temperature polymer electrolyte fuel cell
    Ribeirinha, P.
    Schuller, G.
    Boauentura, M.
    Mendes, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (19) : 13902 - 13912
  • [44] Polymer electrolyte membranes: Diffusion realigned
    Samulski, Edward T.
    NATURE MATERIALS, 2011, 10 (07) : 486 - 487
  • [45] Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications
    Yang, Jingshuai
    Liu, Chao
    Gao, Liping
    Wang, Jin
    Xu, Yixin
    He, Ronghuan
    RSC ADVANCES, 2015, 5 (122) : 101049 - 101054
  • [46] Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes
    Mack, Florian
    Klages, Merle
    Scholta, Joachim
    Joerissen, Ludwig
    Morawietz, Tobias
    Hiesgen, Renate
    Kramer, Dominik
    Zeis, Roswitha
    JOURNAL OF POWER SOURCES, 2014, 255 : 431 - 438
  • [47] High temperature polymer electrolyte membrane fuel cell performance of PtxCoy/C cathodes
    Rao, Ch. Venkateswara
    Parrondo, Javier
    Ghatty, Sundara L.
    Rambabu, B.
    JOURNAL OF POWER SOURCES, 2010, 195 (11) : 3425 - 3430
  • [48] Degradation of High Temperature Polymer Electrolyte Fuel Cell Cathode Material as Affected by Polybenzimidazole
    Kondratenko, Mikhail S.
    Gallyamov, Marat O.
    Tyutyunnik, Oksana A.
    Kubrakova, Irina V.
    Chertovich, Alexander V.
    Malinkina, Ekaterina K.
    Tsirlina, Galina A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) : F587 - F595
  • [49] Continuous durability study of a high temperature polymer electrolyte membrane fuel cell stack
    Batet, David
    Zohra, Fatema T.
    Kristensen, Simon B.
    Andreasen, Soren J.
    Diekhoner, Lars
    APPLIED ENERGY, 2020, 277
  • [50] Design of Highly Durable Electrocatalyst for High-Temperature Polymer Electrolyte Fuel Cell
    Fujigaya, T.
    Berber, M. R.
    Nakashima, N.
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 159 - 169