Fractal diffusion in high temperature polymer electrolyte fuel cell membranes

被引:8
|
作者
Hopfenmueller, Bernhard [1 ]
Zorn, Reiner [2 ,3 ]
Holderer, Olaf [1 ]
Ivanova, Oxana [1 ]
Lehnert, Werner [4 ,5 ]
Lueke, Wiebke [4 ]
Ehlers, Georg [6 ]
Jalarvo, Niina [7 ,8 ]
Schneider, Gerald J. [9 ,10 ]
Monkenbusch, Michael [2 ,3 ]
Richter, Dieter [2 ,3 ]
机构
[1] Forschungszentrum Julich, Julich Ctr Neutron Sci, Heinz Maier Leibnitz Zentrum MLZ, D-85747 Garching, Germany
[2] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS 1, D-52425 Julich, Germany
[3] Inst Complex Syst ICS 1, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Energy & Climate Res IEK Electrochem Proc En, D-52425 Julich, Germany
[5] Rhein Westfal TH Aachen, Fac Mech Engn, Aachen, Germany
[6] Oak Ridge Natl Lab, Neutron Technol Div, Oak Ridge, TN 37831 USA
[7] Oak Ridge Natl Lab, Julich Ctr Neutron Sci, Oak Ridge, TN 37831 USA
[8] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[9] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA
[10] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2018年 / 148卷 / 20期
关键词
ELASTIC NEUTRON-SCATTERING; LOCALIZED TRANSLATIONAL MOTION; PHOSPHORIC-ACID; POLY(2,5-BENZIMIDAZOLE) MEMBRANES; RELAXATION FUNCTIONS; NAFION MEMBRANES; GAUSSIAN MODEL; WATER DYNAMICS; POLYBENZIMIDAZOLE; CONDUCTIVITY;
D O I
10.1063/1.5018717
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity, two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d(w) and the Hausdorff dimension d(f) have been determined on the length scales covered in the neutron scattering experiments. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] PBI derivatives: Polymer electrolyte fuel cell membrane for high temperature operation
    Kim, HJ
    Lim, TH
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2004, 10 (07) : 1081 - 1085
  • [32] Externally cooled high temperature polymer electrolyte membrane fuel cell stack
    Scholta, J.
    Messerschmidt, M.
    Joerissen, L.
    Hartnig, Ch.
    JOURNAL OF POWER SOURCES, 2009, 190 (01) : 83 - 85
  • [33] Advances in the high performance polymer electrolyte membranes for fuel cells
    Zhang, Hongwei
    Shen, Pei Kang
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2382 - 2394
  • [34] Advances in Ion Conducting Membranes and Binders for High Temperature Polymer Electrolyte Membrane Fuel Cells
    Jung, Jiyoon
    Ku, Jinsuk
    Park, Young Sang
    Ahn, Cheol-Hee
    Lee, Jung-Hyun
    Hwang, Seung Sang
    Lee, Albert S.
    POLYMER REVIEWS, 2022, 62 (04) : 789 - 825
  • [35] Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells
    Krishnan, N. Nambi
    Konovalova, Anastasiia
    Aili, David
    Li, Qingfeng
    Park, Hyun Seo
    Jang, Jong Hyun
    Kim, Hyoung-Juhn
    Henkensmeier, Dirk
    JOURNAL OF MEMBRANE SCIENCE, 2019, 588
  • [36] Development of Polymer Electrolyte Membranes for High Temperature PEFCs
    A.Carbone
    R.Pedicini
    A.Saccà
    I.Gatto
    E.Passalacqua
    复旦学报(自然科学版), 2007, (05) : 676 - 677
  • [37] Temperature Control of Polymer Electrolyte Fuel Cell Reformer
    Masuda, Chihiro
    Deng, Mingcong
    2013 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2013, : 429 - 433
  • [38] Polymer electrolyte membranes for fuel cells
    Zhang Hongwei
    Zhou Zhentao
    PROGRESS IN CHEMISTRY, 2008, 20 (04) : 602 - 619
  • [39] Membranes for polymer electrolyte fuel cells
    Glüsen, A
    Stolten, D
    CHEMIE INGENIEUR TECHNIK, 2003, 75 (11) : 1591 - 1597
  • [40] Polymer electrolyte membranes for fuel cells
    Lee, JS
    Quan, ND
    Hwang, JM
    Lee, SD
    Kim, H
    Lee, H
    Kim, HS
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2006, 12 (02) : 175 - 183