Fractal diffusion in high temperature polymer electrolyte fuel cell membranes

被引:8
|
作者
Hopfenmueller, Bernhard [1 ]
Zorn, Reiner [2 ,3 ]
Holderer, Olaf [1 ]
Ivanova, Oxana [1 ]
Lehnert, Werner [4 ,5 ]
Lueke, Wiebke [4 ]
Ehlers, Georg [6 ]
Jalarvo, Niina [7 ,8 ]
Schneider, Gerald J. [9 ,10 ]
Monkenbusch, Michael [2 ,3 ]
Richter, Dieter [2 ,3 ]
机构
[1] Forschungszentrum Julich, Julich Ctr Neutron Sci, Heinz Maier Leibnitz Zentrum MLZ, D-85747 Garching, Germany
[2] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS 1, D-52425 Julich, Germany
[3] Inst Complex Syst ICS 1, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Inst Energy & Climate Res IEK Electrochem Proc En, D-52425 Julich, Germany
[5] Rhein Westfal TH Aachen, Fac Mech Engn, Aachen, Germany
[6] Oak Ridge Natl Lab, Neutron Technol Div, Oak Ridge, TN 37831 USA
[7] Oak Ridge Natl Lab, Julich Ctr Neutron Sci, Oak Ridge, TN 37831 USA
[8] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[9] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA
[10] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2018年 / 148卷 / 20期
关键词
ELASTIC NEUTRON-SCATTERING; LOCALIZED TRANSLATIONAL MOTION; PHOSPHORIC-ACID; POLY(2,5-BENZIMIDAZOLE) MEMBRANES; RELAXATION FUNCTIONS; NAFION MEMBRANES; GAUSSIAN MODEL; WATER DYNAMICS; POLYBENZIMIDAZOLE; CONDUCTIVITY;
D O I
10.1063/1.5018717
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity, two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d(w) and the Hausdorff dimension d(f) have been determined on the length scales covered in the neutron scattering experiments. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nafion®/Silane Nanocomposite Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cell
    Ghil, Lee Jin
    Park, Na Ri
    Kim, Moon Sung
    Rhee, Hee Woo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (07) : 5749 - 5753
  • [2] An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes
    Every, HA
    Hickner, MA
    McGrath, JE
    Zawodzinski, TA
    JOURNAL OF MEMBRANE SCIENCE, 2005, 250 (1-2) : 183 - 188
  • [3] High temperature polymer electrolyte membrane fuel cell
    K.Scott
    M.Mamlouk
    电池, 2006, (05) : 347 - 353
  • [4] Influence of The Molecular Structure on the Properties and Fuel Cell Performance of High Temperature Polymer Electrolyte Membranes
    Kallitsis, J. K.
    Geormezi, M.
    Gourdoupi, N.
    Paloukis, F.
    Andreopoulou, A. K.
    Morfopoulou, C.
    Neophytides, S. G.
    POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01): : 811 - +
  • [5] Impact of Thickness of Polymer Electrolyte Membrane and Gas Diffusion Layer on Temperature Distribution in Single Polymer Electrolyte Fuel Cell Operated at High Temperature
    Nishimura, Akira
    Kamiya, Satoru
    Okado, Tatsuya
    Yamamoto, Kouhei
    Hirota, Masafumi
    KAGAKU KOGAKU RONBUNSHU, 2019, 45 (06) : 227 - 237
  • [6] Development of Polymer Electrolyte Fuel Cell for High Temperature Operation
    Shinoki, T.
    Yoshioka, S.
    Matsumoto, S.
    FUEL CELL SEMINAR 2007, 2008, 12 (01): : 93 - 99
  • [7] Recent Advances in Polybenzimidazole (PBI)-based Polymer Electrolyte Membranes for High Temperature Fuel Cell Applications
    Vijayakumar, Vijayalekshmi
    Kim, Kihyun
    Nam, Sang Yong
    APPLIED CHEMISTRY FOR ENGINEERING, 2019, 30 (06): : 643 - 651
  • [8] Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells
    Ma, YL
    Wainright, JS
    Litt, MH
    Savinell, RF
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) : A8 - A16
  • [9] Proton diffusion in the catalytic layer for high temperature polymer electrolyte fuel cells
    Appel, Marina
    Borisov, Galin
    Holderer, Olaf
    Appavou, Marie-Sousai
    Zorn, Reiner
    Lehnert, Werner
    Richter, Dieter
    RSC ADVANCES, 2019, 9 (65) : 37768 - 37777
  • [10] Alkaline polymer electrolyte membranes for fuel cell applications
    Wang, Yan-Jie
    Qiao, Jinli
    Baker, Ryan
    Zhang, Jiujun
    CHEMICAL SOCIETY REVIEWS, 2013, 42 (13) : 5768 - 5787