Nanoporous Structure and Medium-Range Order in Synthetic Amorphous Calcium Carbonate

被引:152
|
作者
Goodwin, Andrew L. [2 ]
Michel, F. Marc [1 ,3 ]
Phillips, Brian L. [1 ,3 ]
Keen, David A. [4 ,5 ]
Dove, Martin T. [2 ]
Reeder, Richard J. [1 ,3 ]
机构
[1] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
[2] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
[3] SUNY Stony Brook, Ctr Environm Mol Sci, Stony Brook, NY 11794 USA
[4] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
[5] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
RAY-ABSORPTION SPECTROSCOPY; URCHIN LARVAL SPICULE; TOTAL SCATTERING; PRECURSOR PHASE; IN-VITRO; CRYSTALLIZATION; MAGNESIUM; CACO3; BIOMINERALIZATION; TRANSFORMATION;
D O I
10.1021/cm100294d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We adopt a reverse Monte Carlo refinement approach, using experimental X-ray total scattering data, to develop a structure model for synthetic, hydrated amorphous calcium carbonate (ACC). The ACC is revealed to consist of a porous calcium-rich framework that supports interconnected channels containing water and carbonate molecules. The existence of a previously unrecognized nanometer-scale channel network suggests mechanisms of how additives can be accommodated within the structure and provide temporary stabilization, as well as influence the crystallization process. Moreover, while lacking long-range order, the calcium-rich framework in the ACC contains similar Ca packing density to that present in calcite, aragonite, and vaterite, yielding clues of how the amorphous material converts into the different crystalline forms. Our results provide a new starting point for advancing our understanding of biomineralization as well as the development of biomimetic approaches to next-generation materials synthesis.
引用
收藏
页码:3197 / 3205
页数:9
相关论文
共 50 条
  • [31] Medium-range order and optoelectronic properties of a tetrahedrally coordinated hydrogenated amorphous semiconductor
    O. A. Golikova
    Semiconductors, 2001, 35 : 1314 - 1319
  • [32] Medium-range order and optoelectronic properties of a tetrahedrally coordinated hydrogenated amorphous semiconductor
    Golikova, OA
    SEMICONDUCTORS, 2001, 35 (11) : 1314 - 1319
  • [33] Icosahedral clustering with medium-range order and local elastic properties of amorphous metals
    Wakeda, M.
    Shibutani, Y.
    ACTA MATERIALIA, 2010, 58 (11) : 3963 - 3969
  • [34] MEDIUM-RANGE ORDER IN THE SCIENTIFIC COURT
    PHILLIPS, JC
    PHYSICS TODAY, 1989, 42 (06) : 115 - 115
  • [35] Medium-range order and crystallization in amorphous Al-Ni-Pr alloys
    Zhou, JK
    Bian, XF
    Wang, WM
    Xue, XY
    Wang, SH
    Zhao, Y
    Yin, KB
    MATERIALS LETTERS, 2004, 58 (20) : 2559 - 2563
  • [36] Medium-range order as an intrinsic property of Co-rich amorphous alloys
    FdezGubieda, ML
    GarciaArribas, A
    Orue, I
    Plazaola, F
    Barandiaran, JM
    EUROPHYSICS LETTERS, 1997, 40 (01): : 43 - 48
  • [37] SHORT-RANGE AND MEDIUM-RANGE ORDER IN AMORPHOUS RARE-EARTH IRON GARNETS
    GIRNUS, W
    BEUTHIEN, H
    PRIESS, R
    GUNSSER, W
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 54-7 (pt I) : 225 - 226
  • [38] Modeling of medium-range order in glasses
    Pakula, T
    Cervinka, L
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 232 : 619 - 626
  • [39] Medium-range order and random networks
    Gaskell, PH
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2001, 293 : 146 - 152
  • [40] Modeling of medium-range order in glasses
    Pakula, Tadeusz
    Cervinka, Ladislav
    Journal of Non-Crystalline Solids, 1998, 232-234 : 619 - 626