Deep Learning Approach For Facial Age Recognition

被引:0
|
作者
Muneer, Amgad [1 ]
Ali, Rao Faizan [1 ]
Al-Sharai, Abdo Ali [2 ]
机构
[1] Univ Teknol PETRONAS, Dept Comp & Informat Sci, Seri Iskandar, Perak, Malaysia
[2] Univ Tun Hussein Onn Malaysia, Fac Elect & Elect Engn, Johor Baharu, Malaysia
关键词
Generative Adversarial Network; age progression; CACD; face verification; age estimation;
D O I
10.1109/ICIC53490.2021.9692943
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Age estimate using facial images is a fascinating and challenging issue. The characteristics from the face images are utilized to assess people's age, gender, ethnic origin, and emotion. Among this group of characteristics, age estimates can be beneficial in numerous possible real-time applications. Deep learning has recently achieved great success. Hence, we are using the Generative Adversarial Network (GAN) based method for automatic aging of faces. GAN produces images by altering facial attributes, and we create them to preserve the original person's identity in any age version. The deep generative networks have exhibited a remarkable capability in image generation. To the end, we introduced an approach for Identity-Preserving and GAN's Latent vector optimization. The evaluation of the objective of the proposed method demonstrates the following results proposed framework produced more realistic by comparing the state-of-art and ground truth. It can also be used for cross-age verification. We will be using the Dataset of MORPH and CACD to train our GAN model as it requires much data to learn. Moreover, an adversarial learning technique is presented to train a generator and parallel discriminators simultaneously, resulting in smooth continuous face aging sequences.
引用
收藏
页码:953 / 958
页数:6
相关论文
共 50 条
  • [21] Deep Learning Model for Facial Emotion Recognition
    Pathak, Ajeet Ram
    Bhalsing, Somesh
    Desai, Shivani
    Gandhi, Monica
    Patwardhan, Pranathi
    PROCEEDINGS OF ICETIT 2019: EMERGING TRENDS IN INFORMATION TECHNOLOGY, 2020, 605 : 543 - 558
  • [22] Facial Expression Recognition via Deep Learning
    Zhao, Xiaoming
    Shi, Xugan
    Zhang, Shiqing
    IETE TECHNICAL REVIEW, 2015, 32 (05) : 347 - 355
  • [23] Deep Learning Models for Facial Expression Recognition
    Sajjanhar, Atul
    Wu, ZhaoQi
    Wen, Quan
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 583 - 588
  • [24] Deep Learning Methods for Facial Expression Recognition
    Refat, Chowdhury Mohammad Masum
    Azlan, Norsinnira Zainul
    2019 7TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING (ICOM), 2019, : 118 - 123
  • [25] Facial expression recognition via deep learning
    Lv, Yadan
    Feng, Zhiyong
    Xu, Chao
    2014 INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP), 2014,
  • [26] Deep learning approach for facial age classification: a survey of the state-of-the-art
    Olatunbosun Agbo-Ajala
    Serestina Viriri
    Artificial Intelligence Review, 2021, 54 : 179 - 213
  • [27] Deep learning approach for facial age classification: a survey of the state-of-the-art
    Agbo-Ajala, Olatunbosun
    Viriri, Serestina
    ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (01) : 179 - 213
  • [28] Deep Facial Diagnosis: Deep Transfer Learning From Face Recognition to Facial Diagnosis
    Jin, Bo
    Cruz, Leandro
    Goncalves, Nuno
    IEEE ACCESS, 2020, 8 (08): : 123649 - 123661
  • [29] Ordinal Deep Learning for Facial Age Estimation
    Liu, Hao
    Lu, Jiwen
    Feng, Jianjiang
    Zhou, Jie
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (02) : 486 - 501
  • [30] Machine Learning Approach for Facial Expression Recognition
    Gory, Seth
    Al-khassaweneh, Mahmood
    Szczurek, Piotr
    2020 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2020, : 32 - 39