Deep learning approach for facial age classification: a survey of the state-of-the-art

被引:31
|
作者
Agbo-Ajala, Olatunbosun [1 ]
Viriri, Serestina [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-4000 Durban, South Africa
关键词
Age estimation; Convolutional neural network; Deep learning; Facial aging; FACE RECOGNITION; MODEL;
D O I
10.1007/s10462-020-09855-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Age estimation using face images is an exciting and challenging task. The traits from the face images are used to determine age, gender, ethnic background, and emotion of people. Among this set of traits, age estimation can be valuable in several potential real-time applications. The traditional hand-crafted methods relied-on for age estimation, cannot correctly estimate the age. The availability of huge datasets for training and an increase in computational power has made deep learning with convolutional neural network a better method for age estimation; convolutional neural network will learn discriminative feature descriptors directly from image pixels. Several convolutional neural net work approaches have been proposed by many of the researchers, and these have made a significant impact on the results and performances of age estimation systems. In this paper, we present a thorough study of the state-of-the-art deep learning techniques which estimate age from human faces. We discuss the popular convolutional neural network architectures used for age estimation, presents a critical analysis of the performance of some deep learning models on popular facial aging datasets, and study the standard evaluation metrics used for performance evaluations. Finally, we try to analyze the main aspects that can increase the performance of the age estimation system in future.
引用
收藏
页码:179 / 213
页数:35
相关论文
共 50 条
  • [1] Deep learning approach for facial age classification: a survey of the state-of-the-art
    Olatunbosun Agbo-Ajala
    Serestina Viriri
    Artificial Intelligence Review, 2021, 54 : 179 - 213
  • [2] Deep Learning Framework for Speech Emotion Classification: A Survey of the State-of-the-Art
    Akinpelu, Samson
    Viriri, Serestina
    IEEE ACCESS, 2024, 12 : 152152 - 152182
  • [3] Age Estimation using Facial Images: A Survey of the State-of-the-art
    Ahmed, Marwa
    Viriri, Serestina
    PROCEEDINGS OF 2017 SUDAN CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (SCCSIT), 2017, : 11 - 18
  • [4] A State-of-the-Art Survey on Deep Learning Theory and Architectures
    Alom, Md Zahangir
    Taha, Tarek M.
    Yakopcic, Chris
    Westberg, Stefan
    Sidike, Paheding
    Nasrin, Mst Shamima
    Hasan, Mahmudul
    Van Essen, Brian C.
    Awwal, Abdul A. S.
    Asari, Vijayan K.
    ELECTRONICS, 2019, 8 (03)
  • [5] The Fusion of Deep Learning and Fuzzy Systems: A State-of-the-Art Survey
    Zheng, Yuanhang
    Xu, Zeshui
    Wang, Xinxin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 2783 - 2799
  • [6] State-of-the-art Survey on Fuzz Testing for Deep Learning System
    Dai H.-P.
    Sun C.-A.
    Jin H.
    Xiao M.-J.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (11): : 5008 - 5028
  • [7] State-of-the-Art survey of deep learning based sketch retrieval
    Ji Ziheng
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), 2020, : 6 - 14
  • [8] Deep learning techniques for rating prediction: a survey of the state-of-the-art
    Zahid Younas Khan
    Zhendong Niu
    Sulis Sandiwarno
    Rukundo Prince
    Artificial Intelligence Review, 2021, 54 : 95 - 135
  • [9] DEEP LEARNING IN NATURAL LANGUAGE PROCESSING: A STATE-OF-THE-ART SURVEY
    Chai, Junyi
    Li, Anming
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 535 - 540
  • [10] Deep Learning for Brain Tumor Segmentation: A Survey of State-of-the-Art
    Magadza, Tirivangani
    Viriri, Serestina
    JOURNAL OF IMAGING, 2021, 7 (02)