Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups

被引:22
|
作者
Beidleman, J [1 ]
Heineken, H
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
关键词
D O I
10.1515/jgth.2003.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:139 / 158
页数:20
相关论文
共 50 条
  • [31] Classification of Finite Groups Whose Cyclic Subgroups of Composite Order are Subnormal
    李世荣
    庞素琳
    数学季刊, 1998, (02) : 58 - 63
  • [32] Finite groups whose non-abelian self-centralizing subgroups are TI-subgroups or subnormal subgroups
    Sun, Yuqing
    Lu, Jiakuan
    Meng, Wei
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (03)
  • [33] GROUPS WHOSE SUBGROUPS ARE 2-SUBNORMAL
    STADELMANN, M
    ARCHIV DER MATHEMATIK, 1978, 30 (04) : 364 - 371
  • [34] SOLVABILITY OF GROUPS WHOSE SUBGROUPS ARE ALL SUBNORMAL
    MOHRES, W
    ARCHIV DER MATHEMATIK, 1990, 54 (03) : 232 - 235
  • [35] On Groups whose Subnormal Abelian Subgroups are Normal
    Kurdachenko, L. A.
    Otal, J.
    Subbotin, I. Ya
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2022, 14 : 67 - 94
  • [36] The intersection map of subgroups and certain classes of finite groups
    Beidleman J.C.
    Ragland M.F.
    Ricerche di Matematica, 2007, 56 (2) : 217 - 227
  • [37] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 595 - 610
  • [38] Permutable subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Cossey, John
    Esteban-Romero, R.
    Ragland, M. F.
    Schmidt, Jack
    ARCHIV DER MATHEMATIK, 2009, 92 (06) : 549 - 557
  • [39] Characterization of Classes of Finite Groups with the Use of Generalized Subnormal Sylow Subgroups
    Semenchuk, V. N.
    Shevchuk, S. N.
    MATHEMATICAL NOTES, 2011, 89 (1-2) : 117 - 120
  • [40] On Finite Groups with Pπ-Subnormal Subgroups
    Vasil'eva, T. I.
    Koranchuk, A. G.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 421 - 432