INPAINTING WITH FOKKER-PLANCK EQUATION

被引:0
|
作者
Ignat, Anca [1 ]
机构
[1] Univ Alexandru Joan Cuza Iasi, Fac Comp Sci, Gen Berthelot 16, Iasi 700483, Romania
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2019年 / 20卷 / 03期
关键词
Fokker-Planck equation; implicit scheme; image inpainting; ANISOTROPIC DIFFUSION; IMAGE;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper we employ the Fokker-Planck equation for completing an image with missing information. Using this equation has three advantages. The first one is the fact that this equation has a mild solution. The second advantage is that the implicit approximation scheme provides a sequence of solutions which converges to the solution of the Fokker-Planck equation. The third quality of this equation is the low regularization effect on the initial data, thus preserving the edges from the inpainted image. The numerical experiments show that this equation provides a good solution for the inpainting problem.
引用
收藏
页码:225 / 233
页数:9
相关论文
共 50 条
  • [31] Approximate solution for Fokker-Planck equation
    Araujo, M. T.
    Drigo Filho, E.
    CONDENSED MATTER PHYSICS, 2015, 18 (04)
  • [32] A TORSIONAL FOKKER-PLANCK EQUATION FOR BUTANE
    EVANS, GT
    KNAUSS, DC
    JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (09): : 4647 - 4650
  • [33] FUNCTIONAL INTEGRALS AND THE FOKKER-PLANCK EQUATION
    LANGOUCHE, F
    ROEKAERTS, D
    TIRAPEGUI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1979, 53 (01): : 135 - 159
  • [34] A General Solution of the Fokker-Planck Equation
    Araujo, M. T.
    Drigo Filho, E.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 146 (03) : 610 - 619
  • [35] Free energy and the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHYSICA D, 1997, 107 (2-4): : 265 - 271
  • [36] Local fractional Fokker-Planck equation
    Phys Rev Lett, 2 (214):
  • [37] ON THE CURSE OF DIMENSIONALITY IN THE FOKKER-PLANCK EQUATION
    Kumar, Mrinal
    Chakravorty, Suman
    Junkins, John L.
    ASTRODYNAMICS 2009, VOL 135, PTS 1-3, 2010, 135 : 1781 - 1800
  • [38] ON A FOKKER-PLANCK EQUATION FOR WEALTH DISTRIBUTION
    Torregrossa, Marco
    Toscani, Giuseppe
    KINETIC AND RELATED MODELS, 2018, 11 (02) : 337 - 355
  • [39] HYPERSONIC EXPANSION OF THE FOKKER-PLANCK EQUATION
    FERNANDEZFERIA, R
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (02): : 394 - 402
  • [40] Entropy generation and the Fokker-Planck equation
    Lucia, Umberto
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 393 : 256 - 260