ON THE CURSE OF DIMENSIONALITY IN THE FOKKER-PLANCK EQUATION

被引:0
|
作者
Kumar, Mrinal
Chakravorty, Suman
Junkins, John L.
机构
来源
关键词
MONTE-CARLO-SIMULATION; DYNAMICAL-SYSTEMS; UNITY METHOD; OSCILLATORS; STATIONARY; PARTITION;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The curse of dimensionality associated with numerical solution of Fokker-Planck equation (FPE) is addressed in this paper. Two versions of the meshless, node-based partition of unity finite element method (PUFEM), namely, standard-PUFEM and particle-PUFEM are discussed. Both methods formulate the problem as weak form equations of FPE using local shape functions over a meshless cover of the solution domain. The variational (i.e. weak form) integrals are evaluted using quasi Monte-Carlo methods to handle the curse of dimensionality in numerical integration. The particle-PUFEM approach is presented as a generalization of standard-PUFEM and shown to provide flexibility in domain construction in high dimensional spaces and better handle the curse than the standard approach. In the current paper, it is used to solve FPE numerically for systems having up to five dimensional state-space on a small computing workstation, a result hence-far absent from numerical FPE literature. Coupled with local enrichment of the approximation space, it is shown that the particle-PUFEM approach can be used to immensely curb the curse of dimensionality in numerical solution of FPE, thus opening avenues for use of FPE in nonlinear filtering problems with long propagation times between measurements for space applications.
引用
收藏
页码:1781 / 1800
页数:20
相关论文
共 50 条
  • [1] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [2] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [3] On symmetries of the Fokker-Planck equation
    Kozlov, Roman
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 39 - 57
  • [4] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [5] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [6] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [7] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [8] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [9] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886
  • [10] THE THERMALIZED FOKKER-PLANCK EQUATION
    FRISCH, HL
    NOWAKOWSKI, B
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (11): : 8963 - 8969