Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering

被引:27
|
作者
Yang, Zhimin [1 ,2 ]
Yi, Ping [3 ]
Liu, Zhongyue [1 ,2 ]
Zhang, Wenchao [1 ,2 ]
Mei, Lin [1 ,2 ]
Feng, Chengyao [1 ,2 ]
Tu, Chao [1 ,2 ]
Li, Zhihong [1 ,2 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Orthoped, Changsha, Peoples R China
[2] Cent South Univ, Xiangya Hosp 2, Hunan Key Lab Tumor Models & Individualized Med, Changsha, Peoples R China
[3] Cent South Univ, Xiangya Hosp 2, Dept Dermatol, Hunan Key Lab Med Epigen, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
stem cell; hydrogel; 3D bioprinting; bone; cartilage; MESENCHYMAL STEM; SILK FIBROIN; OSTEOBLAST DIFFERENTIATION; ARTICULAR-CARTILAGE; HYALURONIC-ACID; CHONDROGENIC DIFFERENTIATION; CHONDROCYTE DIFFERENTIATION; NANOCOMPOSITE HYDROGELS; IN-VITRO; SCAFFOLDS;
D O I
10.3389/fbioe.2022.865770
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Tremendous advances in tissue engineering and regenerative medicine have revealed the potential of fabricating biomaterials to solve the dilemma of bone and articular defects by promoting osteochondral and cartilage regeneration. Three-dimensional (3D) bioprinting is an innovative fabrication technology to precisely distribute the cell-laden bioink for the construction of artificial tissues, demonstrating great prospect in bone and joint construction areas. With well controllable printability, biocompatibility, biodegradability, and mechanical properties, hydrogels have been emerging as an attractive 3D bioprinting material, which provides a favorable biomimetic microenvironment for cell adhesion, orientation, migration, proliferation, and differentiation. Stem cell-based therapy has been known as a promising approach in regenerative medicine; however, limitations arise from the uncontrollable proliferation, migration, and differentiation of the stem cells and fortunately could be improved after stem cells were encapsulated in the hydrogel. In this review, our focus was centered on the characterization and application of stem cell-laden hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. We not only highlighted the effect of various kinds of hydrogels, stem cells, inorganic particles, and growth factors on chondrogenesis and osteogenesis but also outlined the relationship between biophysical properties like biocompatibility, biodegradability, osteoinductivity, and the regeneration of bone and cartilage. This study was invented to discuss the challenge we have been encountering, the recent progress we have achieved, and the future perspective we have proposed for in this field.
引用
下载
收藏
页数:25
相关论文
共 50 条
  • [41] 3D bioprinting of complex channels within cell-laden hydrogels
    Ji, Shen
    Almeida, Emily
    Guvendiren, Murat
    ACTA BIOMATERIALIA, 2019, 95 : 214 - 224
  • [42] 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration
    Hu, Duo
    Wu, Dongwei
    Huang, Lin
    Jiao, Yanpeng
    Li, Lihua
    Lu, Lu
    Zhou, Changren
    MATERIALS LETTERS, 2018, 223 : 219 - 222
  • [43] 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality
    Hull, Sarah M.
    Brunel, Lucia G.
    Heilshorn, Sarah C.
    ADVANCED MATERIALS, 2022, 34 (02)
  • [44] Spreading behavior of cell-laden droplets in 3D bioprinting process
    Chen, Xinxing
    O'Mahony, Aidan P.
    Barber, Tracie
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (01)
  • [45] 3D printing of cell-laden electroconductive bioinks for tissue engineering applications
    Rastin, Hadi
    Zhang, Bingyang
    Bi, Jingxiu
    Hassan, Kamrul
    Tran Thanh Tung
    Losic, Dusan
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (27) : 5862 - 5876
  • [46] 3D Bioprinting of Spatially Graded PCL/Hydrogel Constructs for Cartilage Tissue Engineering
    Daly, A. C.
    Critchley, S. E.
    Rencsok, E. M.
    Kelly, D. J.
    TISSUE ENGINEERING PART A, 2015, 21 : S187 - S188
  • [47] The role of percolation in hydrogel-based tissue engineering and bioprinting
    Vernerey, Franck J.
    Bryant, Stephanie
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2020, 15 : 68 - 74
  • [48] Development of 3D printing-based tendon-derived stem cell-laden 3D microtissues for tendon tissue engineering
    Jeberson, Jothilin Subitsha Alex
    Augustine, George
    Kim, Yunhye
    Son, Jiwon
    Lee, Ami
    Lee, Joon Ho
    Hwang, Yongsung
    TISSUE ENGINEERING PART A, 2022, 28 : 799 - 799
  • [49] 3D Bioprinting of Hydrogels for Cartilage Tissue Engineering
    Huang, Jianghong
    Xiong, Jianyi
    Wang, Daping
    Zhang, Jun
    Yang, Lei
    Sun, Shuqing
    Liang, Yujie
    GELS, 2021, 7 (03)
  • [50] 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering
    Daly, Andrew C.
    Freeman, Fiona E.
    Gonzalez-Fernandez, Tomas
    Critchley, Susan E.
    Nulty, Jessica
    Kelly, Daniel J.
    ADVANCED HEALTHCARE MATERIALS, 2017, 6 (22)