A LOCAL SUBSPACE BASED NONLINEAR TARGET DETECTOR

被引:0
|
作者
Wang, Ting [1 ]
Du, Bo [2 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Comp, Wuhan 430072, Peoples R China
关键词
target detection; orthogonal subspace projection; kernel mapping; localized; HYPERSPECTRAL IMAGERY; ANOMALY DETECTION; CLASSIFICATION; ALGORITHMS; PROJECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional Orthogonal Subspace Projection (OSP) target detection method can not solve the problem of nonlinear mixing of endmember spectra. Meanwhile, Kernelized Orthogonal Subspace Projection (KOSP) method maps the inseparable data into high dimension space where the target endmembers and background endmembers can be separated. However, the background subspace remains the same for different pixels in KOSP, which would lead to false alarms due to the spectral variation. In order to optimize the background subspace and better suppress the false alarms, this paper proposes a local subspace based nonlinear OSP method (LKOSP) for target detection. Kernelization and neighbor spatial information are used to construct variable optimum background projective subspace. In both simulated data and real image experiments, LKOSP showed superior detection performance over other conventional algorithms.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] A tensor-based adaptive subspace detector for hyperspectral anomaly detection
    Zhang, Lili
    Cheng, Baozhi
    Deng, Yuwei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (08) : 2366 - 2382
  • [42] Affine-invariant target tracking based on subspace representation
    Cui, Xiongwen
    Wu, Qinzhang
    Jiang, Ping
    Zhou, Jin
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2015, 44 (02): : 769 - 774
  • [43] Multiple Subspace-Based Target Detection in Deterministic Interference
    Sun, Mengru
    Liu, Weijian
    Liu, Jun
    Hao, Chengpeng
    Li, Kefei
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 3134 - 3138
  • [44] SAR target recognition method based on orthogonal subspace of samples
    Han, Zheng
    Su, Zhi-Gang
    Han, Ping
    Wu, Ren-Biao
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2009, 31 (11): : 2581 - 2584
  • [45] Subspace-Based Target Detection in LWIR Hyperspectral Imaging
    Acito, N.
    Moscadelli, M.
    Diani, M.
    Corsini, G.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1047 - 1051
  • [46] Hyperspectral subpixel target detection based on interaction subspace model
    Sun, Shengyin
    Liu, Jun
    Sun, Siyu
    PATTERN RECOGNITION, 2023, 139
  • [47] Target Velocity Estimation in OFDM Radar Based on Subspace Approaches
    Kashin, Vyacheslav A.
    Mavrychev, Evgeny A.
    2013 14TH INTERNATIONAL RADAR SYMPOSIUM (IRS), VOLS 1 AND 2, 2013, : 1061 - 1066
  • [48] NONLINEAR SUBSPACE CLUSTERING
    Zhu, Wencheng
    Lu, Jiwen
    Zhou, Jie
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4497 - 4501
  • [49] On utilizing search methods to select subspace dimensions for kernel-based nonlinear subspace classifiers
    Kim, SW
    Oommen, BJ
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (01) : 136 - 141
  • [50] Analyses of the performance of adaptive subspace detector on fluctuating target detection in system-dependent clutter background
    Lei, Shiwen
    Zhao, Zhiqin
    Nie, Zaiping
    IET RADAR SONAR AND NAVIGATION, 2016, 10 (09): : 1635 - 1642