Subspace-Based Target Detection in LWIR Hyperspectral Imaging

被引:2
|
作者
Acito, N. [1 ]
Moscadelli, M. [2 ]
Diani, M. [1 ]
Corsini, G. [2 ]
机构
[1] Armi Navali, Acad Navale Dip, I-57127 Moscadelli, Italy
[2] Univ Pisa, Dept Informat Engn, I-56122 Pisa, Italy
关键词
Atmospheric modeling; Object detection; Hyperspectral imaging; Image reconstruction; Atmospheric measurements; Hyperspectral long-wave infrared (LWIR) images; low-rank subspace projection; target detection; ATMOSPHERIC COMPENSATION; MODEL;
D O I
10.1109/LGRS.2019.2939751
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a new method to detect materials with known spectral emissivity in data acquired by longwave infrared hyperspectral sensors. The proposed approach differs from existing methods because it takes into account the uncertainty of the downwelling radiance. Such uncertainty is addressed assuming that the downwelling radiance spans a low-rank subspace whose basis matrix is learned, regardless of the analyzed image, from MODTRAN simulated spectra. The analysis, carried out over data simulated by considering different atmospheric conditions, surface temperatures, and emissivity spectra, shows the effectiveness of the proposed algorithm.
引用
收藏
页码:1047 / 1051
页数:5
相关论文
共 50 条
  • [1] Coupled Subspace-Based Atmospheric Compensation of LWIR Hyperspectral Data
    Acito, N.
    Diani, M.
    Corsini, G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 5224 - 5238
  • [2] Subspace-Based Temperature and Emissivity Separation Algorithms in LWIR Hyperspectral Data
    Acito, N.
    Diani, M.
    Corsini, G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03): : 1523 - 1537
  • [3] LOCAL APPROACH TO ORTHOGONAL SUBSPACE-BASED TARGET DETECTION IN HYPERSPECTRAL IMAGES
    Matteoli, Stefania
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 388 - +
  • [4] KERNEL SUBSPACE-BASED ANOMALY DETECTION FOR HYPERSPECTRAL IMAGERY
    Nasrabadi, Nasser M.
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 83 - 86
  • [5] A Subspace-Based Change Detection Method for Hyperspectral Images
    Wu, Chen
    Du, Bo
    Zhang, Liangpei
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 815 - 830
  • [6] Subspace-Based Target Detection in the Presence of Multiple Alternative Hypotheses
    Faro, Eloisa
    Giunta, Gaetano
    Han, Sudan
    Orlando, Danilo
    Pallotta, Luca
    [J]. 2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [7] Subspace-based clutter filtering for improved SAR target detection
    Paul, Anindya S.
    Shaw, Arnab K.
    [J]. PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, 2006, : 425 - +
  • [8] Kernel Subspace-based Real-time Anomaly Detection for Hyperspectral Imagery
    Zhao, Chunhui
    You, Wei
    Wang, Jia
    Wong, Yulei
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1865 - 1868
  • [9] A Hyperspectral Subspace Target Detection Method Based on AMUSE
    Hou, Yani
    Zhu, Wenzhong
    Wang, Erli
    Zhang, Ying
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (12)
  • [10] Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection
    [J]. Sun, Weiwei (sunweiwei@nbu.edu.cn), 1600, SPIE (12):