KERNEL SUBSPACE-BASED ANOMALY DETECTION FOR HYPERSPECTRAL IMAGERY

被引:0
|
作者
Nasrabadi, Nasser M. [1 ]
机构
[1] USA, Res Lab, Adelphi, MD 20783 USA
关键词
Anomaly detection; kernel machine learning; EIGENSPACE SEPARATION TRANSFORM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper provides a performance comparison of various linear and nonlinear subspace-based anomaly detectors. Three different techniques, Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD) Analysis, and the Eigenspace Separation Transform (EST), are used to generate the linear projection subspaces. Each of these three linear methods is then extended to its corresponding nonlinear kernel version. The well-known Reed-Xiaoli (RX) anomaly detector and its kernel version (kernel RX) are also implemented. Comparisons between all linear and non-linear anomaly detectors are made using receiver operating characteristics (ROC) curves for several hyperspectral imagery.
引用
收藏
页码:83 / 86
页数:4
相关论文
共 50 条
  • [1] Kernel Subspace-based Real-time Anomaly Detection for Hyperspectral Imagery
    Zhao, Chunhui
    You, Wei
    Wang, Jia
    Wong, Yulei
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1865 - 1868
  • [2] Kernel-based anomaly detection in hyperspectral imagery
    Kwon, Heesung
    Nasrabadi, Nasser M.
    [J]. TRANSFORMATIONAL SCIENCE AND TECHNOLOGY FOR THE CURRENT AND FUTURE FORCE, 2006, 42 : 3 - +
  • [4] Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection
    Sun, Weiwei
    Yang, Gang
    Li, Jialin
    Zhang, Dianfa
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (01)
  • [5] Subspace-based Bayesian blind source separation for hyperspectral imagery
    Dobigeon, Nicolas
    Moussaoui, Said
    Coulon, Martial
    Tourneret, Jean-Yves
    Hero, Alfred O.
    [J]. 2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2009, : 372 - 375
  • [6] Subspace-based Bayesian blind source separation for hyperspectral imagery
    Dobigeon, Nicolas
    Moussaoui, Sait
    Coulon, Martial
    Tourneret, Jean-Yves
    Hero, Alfred O.
    [J]. 2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2009), 2009, : 372 - +
  • [7] Anomaly Detection in Hyperspectral Imagery Based on Kernel ICA Feature Extraction
    Mei, Feng
    Zhao, Chunhui
    Wang, Liguo
    Huo, Hanjun
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 869 - +
  • [8] Subspace-based multitask learning framework for hyperspectral imagery classification
    Yu, Haoyang
    Gao, Lianru
    Li, Jun
    Zhan, Bing
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (13-14) : 8887 - 8909
  • [9] Subspace-based multitask learning framework for hyperspectral imagery classification
    Haoyang Yu
    Lianru Gao
    Jun Li
    Bing Zhang
    [J]. Multimedia Tools and Applications, 2020, 79 : 8887 - 8909
  • [10] An Adaptive Kernel Method for Anomaly Detection in Hyperspectral Imagery
    Mei, Feng
    Zhao, Chunhui
    Hu, Hanjun
    Sun, Yan
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 874 - +