Subspace-based Bayesian blind source separation for hyperspectral imagery

被引:0
|
作者
Dobigeon, Nicolas [1 ]
Moussaoui, Said [2 ]
Coulon, Martial [1 ]
Tourneret, Jean-Yves [1 ]
Hero, Alfred O. [2 ,3 ]
机构
[1] Univ Toulouse, IRIT INP ENSEEIHT, 2 Rue Charles Camichel,BP 7122, F-31071 Toulouse 7, France
[2] RCCyN, CNRS UMR, ECN, F-44321 Nantes 3, France
[3] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a fully Bayesian algorithm for endmember extraction and abundance estimation for hyperspectral imagery is introduced. Following the linear mixing model, each pixel spectrum of the hyperspectral image is decomposed as a linear combination of pure endmember spectra. The estimation of the unknown endmember spectra and the corresponding abundances is conducted in a unified manner by generating the posterior distribution of the unknown parameters under a hierarchical Bayesian model. The proposed model accounts for non-negativity and full-additivity constraints, and exploits the fact that the endmember spectra lie on a lower dimensional space. A Gibbs algorithm is proposed to generate samples distributed according to the posterior of interest. Simulation results illustrate the accuracy of the proposed joint Bayesian estimator.
引用
收藏
页码:372 / 375
页数:4
相关论文
共 50 条
  • [1] Subspace-based Bayesian blind source separation for hyperspectral imagery
    Dobigeon, Nicolas
    Moussaoui, Sait
    Coulon, Martial
    Tourneret, Jean-Yves
    Hero, Alfred O.
    [J]. 2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2009), 2009, : 372 - +
  • [2] KERNEL SUBSPACE-BASED ANOMALY DETECTION FOR HYPERSPECTRAL IMAGERY
    Nasrabadi, Nasser M.
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 83 - 86
  • [3] Subspace-based multitask learning framework for hyperspectral imagery classification
    Yu, Haoyang
    Gao, Lianru
    Li, Jun
    Zhan, Bing
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (13-14) : 8887 - 8909
  • [4] Subspace-based multitask learning framework for hyperspectral imagery classification
    Haoyang Yu
    Lianru Gao
    Jun Li
    Bing Zhang
    [J]. Multimedia Tools and Applications, 2020, 79 : 8887 - 8909
  • [5] Blind source separation based on subspace
    Xu, SZ
    Ye, ZF
    [J]. INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES 2005, VOLS 1 AND 2, PROCEEDINGS, 2005, : 151 - 154
  • [6] Subspace-based channel shortening for the blind, separation of convolutive mixtures
    Diamantaras, Konstantinos I.
    Papadimitriou, Theophilos
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (10) : 3669 - 3677
  • [7] Kernel Subspace-based Real-time Anomaly Detection for Hyperspectral Imagery
    Zhao, Chunhui
    You, Wei
    Wang, Jia
    Wong, Yulei
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1865 - 1868
  • [8] Subspace-Based Temperature and Emissivity Separation Algorithms in LWIR Hyperspectral Data
    Acito, N.
    Diani, M.
    Corsini, G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03): : 1523 - 1537
  • [9] Union of random subspace-based group sparse representation for hyperspectral imagery classification
    Yu, Haoyang
    Gao, Lianru
    Zhang, Bing
    [J]. REMOTE SENSING LETTERS, 2018, 9 (06) : 534 - 540
  • [10] A Blind Identification and Source Separation Method Based on Subspace Intersections for Hyperspectral Astrophysical Data
    Boulais, Axel
    Deville, Yannick
    Berne, Olivier
    [J]. LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017), 2017, 10169 : 367 - 380