Thermal conductivity measurement under hydrostatic pressure using the 3ω method

被引:49
|
作者
Chen, F [1 ]
Shulman, J
Xue, Y
Chu, CW
Nolas, GS
机构
[1] Univ Houston, Texas Ctr Superconduct & Adv Mat, Houston, TX 77204 USA
[2] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[3] Hong Kong Univ Sci & Technol, Lawrence Berkeley Natl Lab, Hong Kong, Hong Kong, Peoples R China
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2004年 / 75卷 / 11期
关键词
D O I
10.1063/1.1805771
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have designed and modeled new techniques, based on the 3omega method, to measure thermal conductivity of liquids (kappa(l)) and solids (kappa(s)) under hydrostatic pressure (P). The system involves a solid sample immersed in a liquid pressure medium, both of which have unknown thermal properties. The temperature (T) and P dependance of kappa(l) are first determined through the use of a modified 3omega technique. This method uses a conducting wire (Pt, in this work), which is immersed in the pressure medium, as the heater/sensor. In addition to kappa(l), this allows for the accurate determination of the specific heat per volume of the liquid and Pt, (rhoC)(l) and (rhoC)(Pt), respectively. The information of kappa(l) and (rhoC)(l) can then be used to make corrections to measurements of kappa(s), in which the sample is immersed in the pressure medium, and a metal strip acts as the heater/sensor. We present the T and P dependence of kappa(l) and (rhoC)(l) for the widely used pressure medium 3M Fluorinert FC77 up to 0.8 GPa. The measurement of kappa(s) for a thermoelectric clathrate material, Sr8Ga16Ge30, in FC77 is analyzed in detail, and the refined data achieves an accuracy of 1%. The setup can be modified to measure kappa and rhoC up to 3.5 GPa. (C) 2004 American Institute of Physics.
引用
收藏
页码:4578 / 4584
页数:7
相关论文
共 50 条
  • [21] Measurement of thermal conductivity of fluids using 3-ω method in a suspended micro wire
    Karthik, R.
    Nagarajan, N. Harish
    Raja, B.
    Damodharan, P.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2012, 21 (01) : 60 - 68
  • [22] Measurement of Thermal Conductivity of TiO2 Thin Films Using 3ω Method
    D. J. Kim
    D. S. Kim
    S. Cho
    S. W. Kim
    S. H. Lee
    J. C. Kim
    International Journal of Thermophysics, 2004, 25 : 281 - 289
  • [23] Development of a Thermal Conductivity Measurement System Using the 3ω Method and Application to Thermoelectric Particles
    Shunsuke Nishino
    Mikio Koyano
    Koichiro Suekuni
    Keisuke Ohdaira
    Journal of Electronic Materials, 2014, 43 : 2151 - 2156
  • [24] Measurement of thermal conductivity of TiO2 thin films using 3ω method
    Kim, DJ
    Kim, DS
    Cho, S
    Kim, SW
    Lee, SH
    Kim, JC
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2004, 25 (01) : 281 - 289
  • [25] Measurement of Thermal Conductivity of Carbon Fibers Using Wire-Based 3ω Method
    Liang, J.
    Saha, M. C.
    Altan, M. C.
    PROCEEDINGS OF THE AMERICAN SOCIETY FOR COMPOSITES, 2013,
  • [26] Development of a Thermal Conductivity Measurement System Using the 3ω Method and Application to Thermoelectric Particles
    Nishino, Shunsuke
    Koyano, Mikio
    Suekuni, Koichiro
    Ohdaira, Keisuke
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (06) : 2151 - 2156
  • [27] Measurement of the thermal conductivity of flexible biosourced polymers using the 3-omega method
    Boussatour, G.
    Cresson, P. Y.
    Genestie, B.
    Joly, N.
    Brun, J. F.
    Lasri, T.
    POLYMER TESTING, 2018, 70 : 503 - 510
  • [28] INFLUENCE OF HYDROSTATIC PRESSURE ON THE THERMAL CONDUCTIVITY OF SEMICONDUCTING MATERIALS.
    Averkin, A.A.
    Zhaparov, Zh.Zh.
    Stil'bans, L.S.
    1972, 5 (11): : 1954 - 1956
  • [29] Thermal conductivity measurement of VO2 nanofluid using bidirectional 3ω method
    Lee, Duk Hyung
    Oh, Dong-Wook
    Kim, Sok Won
    Choi, Yeon Suk
    HIGH TEMPERATURES-HIGH PRESSURES, 2021, 50 (4-5) : 355 - 367
  • [30] Error factors in precise thermal conductivity measurement using 3ω method for wire samples
    Sekimoto, Yuki
    Abe, Ryo
    Kojima, Hirotaka
    Benten, Hiroaki
    Nakamura, Masakazu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (06) : 2285 - 2296