Bipartite-perfect graphs

被引:0
|
作者
Le, VB [1 ]
机构
[1] Univ Rostock, Fachbereich Informat, D-18051 Rostock, Germany
关键词
P-4-structure of graphs; perfect graphs; P-4; -connectedness; modular decomposition; bipartite graphs;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two graphs G and H with the same vertex set V are P-4-isomorphic if there exists a permutation pi on V such that, for all subsets S subset of or equal to V, S induces a chordless path on four vertices (denoted by P-4) in G if and only if pi(S) induces a P-4 in H. This paper gives a characterization of all graphs P-4-isomorphic to a bipartite graph, which we call bipartite-perfect graphs. The characterization is based on graphs P-4-isomorphic to a tree previously described by A. Brandstadt and the author, and implies a linear time recognition algorithm for bipartite-perfect graphs. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:581 / 599
页数:19
相关论文
共 50 条
  • [41] Cyclewidth and the Grid Theorem for Perfect Matching Width of Bipartite Graphs
    Hatzel, Meike
    Rabinovich, Roman
    Wiederrecht, Sebastian
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2019), 2019, 11789 : 53 - 65
  • [42] On the order of almost regular bipartite graphs without perfect matchings
    Volkmann, Lutz
    Zingsem, Axel
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 165 - 170
  • [43] On the smallest positive eigenvalue of bipartite graphs with a unique perfect matching
    Barik, Sasmita
    Behera, Subhasish
    Pati, Sukanta
    DISCRETE APPLIED MATHEMATICS, 2024, 347 : 311 - 318
  • [44] On rank-perfect subclasses of near-bipartite graphs
    Wagler A.K.
    4OR, 2005, 3 (4) : 329 - 336
  • [45] Perfect matchings in inhomogeneous random bipartite graphs in random environment
    Bochi, Jairo
    Iommi, Godofredo
    Ponce, Mario
    CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (02): : 263 - 272
  • [46] FINDING ALL MINIMUM-COST PERFECT MATCHINGS IN BIPARTITE GRAPHS
    FUKUDA, K
    MATSUI, T
    NETWORKS, 1992, 22 (05) : 461 - 468
  • [47] Smallest Close to Regular Bipartite Graphs without an Almost Perfect Matching
    Volkmann, Lutz
    Zingsem, Axel
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (08) : 1403 - 1412
  • [48] Inverses of non-bipartite unicyclic graphs with a unique perfect matching
    Kalita, Debajit
    Sarma, Kuldeep
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14): : 2765 - 2781
  • [49] Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs
    Uno, T
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 1997, 1350 : 92 - 101
  • [50] Exact sampling from perfect matchings of dense regular bipartite graphs
    Huber, M
    ALGORITHMICA, 2006, 44 (03) : 183 - 193