Bipartite-perfect graphs

被引:0
|
作者
Le, VB [1 ]
机构
[1] Univ Rostock, Fachbereich Informat, D-18051 Rostock, Germany
关键词
P-4-structure of graphs; perfect graphs; P-4; -connectedness; modular decomposition; bipartite graphs;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two graphs G and H with the same vertex set V are P-4-isomorphic if there exists a permutation pi on V such that, for all subsets S subset of or equal to V, S induces a chordless path on four vertices (denoted by P-4) in G if and only if pi(S) induces a P-4 in H. This paper gives a characterization of all graphs P-4-isomorphic to a bipartite graph, which we call bipartite-perfect graphs. The characterization is based on graphs P-4-isomorphic to a tree previously described by A. Brandstadt and the author, and implies a linear time recognition algorithm for bipartite-perfect graphs. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:581 / 599
页数:19
相关论文
共 50 条
  • [31] Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs
    Samir Datta
    Raghav Kulkarni
    Sambuddha Roy
    Theory of Computing Systems, 2010, 47 : 737 - 757
  • [32] Z-transformation graphs of perfect matchings of plane bipartite graphs: a survey
    Zhang, Heping
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2006, 56 (03) : 457 - 476
  • [33] Block graphs of z-transformation graphs of perfect matchings of plane elementary bipartite graphs
    Zhang, HP
    Zhang, FJ
    ARS COMBINATORIA, 1999, 53 : 309 - 314
  • [34] Combinatorics of perfect matchings in plane bipartite graphs and application to tilings
    Fournier, JC
    THEORETICAL COMPUTER SCIENCE, 2003, 303 (2-3) : 333 - 351
  • [35] Rainbow Perfect Matchings in Complete Bipartite Graphs: Existence and Counting
    Perarnau, Guillem
    Serra, Oriol
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (05): : 783 - 799
  • [36] Perfect Matchings via Uniform Sampling in Regular Bipartite Graphs
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    ACM TRANSACTIONS ON ALGORITHMS, 2010, 6 (02)
  • [37] On the Number of Perfect Matchings for Some Certain Types of Bipartite Graphs
    Oteles, Ahmet
    FILOMAT, 2017, 31 (15) : 4809 - 4818
  • [38] Perfect Matchings via Uniform Sampling in Regular Bipartite Graphs
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 11 - +
  • [39] Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs
    Datta, Samir
    Kulkarni, Raghav
    Tewari, Raghunath
    Vinodchandran, N. Variyam
    28TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2011), 2011, 9 : 579 - 590
  • [40] Space complexity of perfect matching in bounded genus bipartite graphs
    Datta, Samir
    Kulkarni, Raghav
    Tewari, Raghunath
    Vinodchandran, N. V.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (03) : 765 - 779