Parameter determination for ice material model based on a bidirectional long short-term memory neural network

被引:8
|
作者
Li, Dacheng [1 ]
Jiang, Xiongwen [1 ]
Zhang, Wei [1 ]
Guo, Licheng [2 ]
机构
[1] Harbin Inst Technol, High Veloc Impact Dynam Lab, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Ice material; Impact test; Finite element method; Inverse method; LSTM neural network; IMPACT; STRENGTH; BEHAVIOR; FRACTURE;
D O I
10.1016/j.ijimpeng.2021.104110
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Parameter determination is a common problem in engineering activities. For impact problems subjected to ice projectiles, however, very few researches have addressed the inverse method to determine the material pa-rameters of ice for finite element simulations. The present study introduced a novel method based on a sequence-to-sequence bidirectional long short-term memory (LSTM) neural network to learn the relationship between the input impact force histories and output material parameters of the finite element model, which was built to reproduce the ice impact test using a hollow tube sensor. After the trained network was evaluated by testing data set, the experimental data was used to predict the parameters for the numerical model to precisely match the test results.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Wind Power Forecasting Method Based on Bidirectional Long Short-Term Memory Neural Network and Error Correction
    Liu, Wei
    Liu, Yuming
    Fu, Lei
    Yang, Minghui
    Hu, Renchun
    Kang, Yanping
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2022, 49 (13-14) : 1169 - 1180
  • [32] A Graph Fourier Transform Based Bidirectional Long Short-Term Memory Neural Network for Electrophysiological Source Imaging
    Jiao, Meng
    Wan, Guihong
    Guo, Yaxin
    Wang, Dongqing
    Liu, Hang
    Xiang, Jing
    Liu, Feng
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [33] Hardware Architecture of Bidirectional Long Short-Term Memory Neural Network for Optical Character Recognition
    Rybalkin, Vladimir
    Wehn, Norbert
    Yousefi, Mohammad Reza
    Stricker, Didier
    PROCEEDINGS OF THE 2017 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2017, : 1390 - 1395
  • [34] Evaluation model design of project construction safety level based on bidirectional recurrent neural network (BiRNN) and bidirectional long short-term memory (BiLSTM)
    Ge, Ming
    Yuan, Yongbo
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [35] Automatic Lip Reading Using Convolution Neural Network and Bidirectional Long Short-term Memory
    Lu, Yuanyao
    Yan, Jie
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (01)
  • [36] Short-Term Traffic Flow Forecast Based on Parallel Long Short-Term Memory Neural Network
    Qiao, Songlin
    Sun, Rencheng
    Fan, Guangpeng
    Liu, Ji
    PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 253 - 257
  • [37] Accurate ultra-short-term load forecasting based on load characteristic decomposition and convolutional neural network with bidirectional long short-term memory model
    Zhang, Mingyue
    Han, Yang
    Zalhaf, Amr S.
    Wang, Chaoyang
    Yang, Ping
    Wang, Congling
    Zhou, Siyu
    Xiong, Tianlong
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 35
  • [38] Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model
    Joseph, Lionel P.
    Deo, Ravinesh C.
    Casillas-Perez, David
    Prasad, Ramendra
    Raj, Nawin
    Salcedo-Sanz, Sancho
    APPLIED ENERGY, 2024, 359
  • [39] Time series prediction method based on the bidirectional long short-term memory network
    Guan, Yepeng
    Su, Guangyao
    Sheng, Yi
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (03): : 103 - 112
  • [40] Sea surface temperature prediction model based on long and short-term memory neural network
    Li, Xiaojing
    3RD INTERNATIONAL FORUM ON GEOSCIENCE AND GEODESY, 2021, 658