Parameter determination for ice material model based on a bidirectional long short-term memory neural network

被引:8
|
作者
Li, Dacheng [1 ]
Jiang, Xiongwen [1 ]
Zhang, Wei [1 ]
Guo, Licheng [2 ]
机构
[1] Harbin Inst Technol, High Veloc Impact Dynam Lab, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Ice material; Impact test; Finite element method; Inverse method; LSTM neural network; IMPACT; STRENGTH; BEHAVIOR; FRACTURE;
D O I
10.1016/j.ijimpeng.2021.104110
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Parameter determination is a common problem in engineering activities. For impact problems subjected to ice projectiles, however, very few researches have addressed the inverse method to determine the material pa-rameters of ice for finite element simulations. The present study introduced a novel method based on a sequence-to-sequence bidirectional long short-term memory (LSTM) neural network to learn the relationship between the input impact force histories and output material parameters of the finite element model, which was built to reproduce the ice impact test using a hollow tube sensor. After the trained network was evaluated by testing data set, the experimental data was used to predict the parameters for the numerical model to precisely match the test results.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Reflection Coefficients Inversion Based on the Bidirectional Long Short-Term Memory Network
    Yang, Naxia
    Xiong, Jinliang
    Guo, Chunxiang
    Guo, Shuwen
    Li, Guofa
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] A forecasting model for wave heights based on a long short-term memory neural network
    Song Gao
    Juan Huang
    Yaru Li
    Guiyan Liu
    Fan Bi
    Zhipeng Bai
    Acta Oceanologica Sinica, 2021, 40 : 62 - 69
  • [23] A forecasting model for wave heights based on a long short-term memory neural network
    Song Gao
    Juan Huang
    Yaru Li
    Guiyan Liu
    Fan Bi
    Zhipeng Bai
    ActaOceanologicaSinica, 2021, 40 (01) : 62 - 69
  • [24] A model for vessel trajectory prediction based on long short-term memory neural network
    Tang H.
    Yin Y.
    Shen H.
    Journal of Marine Engineering and Technology, 2022, 21 (03): : 136 - 145
  • [25] Air Quality Prediction Based on Neural Network Model of Long Short-term Memory
    Du, Zhehua
    Lin, Xin
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508
  • [26] A forecasting model for wave heights based on a long short-term memory neural network
    Gao, Song
    Huang, Juan
    Li, Yaru
    Liu, Guiyan
    Bi, Fan
    Bai, Zhipeng
    ACTA OCEANOLOGICA SINICA, 2021, 40 (01) : 62 - 69
  • [27] Bidirectional Long Short-Term Memory Network for Taxonomic Classification
    Soliman, Naglaa F.
    Abd Alhalem, Samia M.
    El-Shafai, Walid
    Abdulrahman, Salah Eldin S. E.
    Ismaiel, N.
    El-Rabaie, El-Sayed M.
    Algarni, Abeer D.
    Algarni, Fatimah
    Abd El-Samie, Fathi E.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (01): : 103 - 116
  • [28] District heating load prediction algorithm based on bidirectional long short-term memory network model
    Cui, Mianshan
    ENERGY, 2022, 254
  • [29] Aspect-Based Sentiment Analysis Using Convolutional Neural Network and Bidirectional Long Short-Term Memory
    Cahyadi, Alson
    Khodra, Masayu Leylia
    2018 5TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS: CONCEPTS, THEORY AND APPLICATIONS (ICAICTA 2018), 2018, : 124 - 129
  • [30] EEG and sEMG Decoding of Gait Spatiotemporal Parameters Based on Bidirectional Long Short-Term Memory Neural Network
    wei P.
    Ma P.
    Zhang J.
    Hong J.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (09): : 142 - 150