Srf-/- ES cells display non-cell-autonomous impairment in mesodermal differentiation

被引:75
|
作者
Weinhold, B
Schratt, G
Arsenian, S
Berger, J
Kamino, K
Schwarz, H
Rüther, U
Nordheim, A
机构
[1] Univ Tubingen, Inst Zellbiol, Mol Biol Abt, D-72076 Tubingen, Germany
[2] Med Hsch Hannover, Inst Mol Biol, D-30625 Hannover, Germany
[3] Max Planck Inst Entwicklungsbiol, D-72074 Tubingen, Germany
[4] Med Hsch Hannover, Inst Pathol, D-30625 Hannover, Germany
[5] Univ Dusseldorf, D-40225 Dusseldorf, Germany
来源
EMBO JOURNAL | 2000年 / 19卷 / 21期
关键词
embryoid bodies; embryonic stem cells; mesoderm induction; murine embryogenesis; serum response factor;
D O I
10.1093/emboj/19.21.5835
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The serum response factor (SRF) transcription factor is essential for murine embryogenesis. Srf(-/-) embryos stop developing at the onset of gastrulation, lacking detectable mesoderm, This developmental defect may reflect cell-autonomous impairment of Srf(-/-) embryonic cells in mesoderm formation. Alternatively, it may be caused by a non-cell-autonomous defect superimposed upon inappropriate provision of mesoderm-inducing signals to primitive ectodermal cells. We demonstrate that the ability of Srf(-/-) embryonic stem (ES) cells to differentiate in vitro into mesodermal cells is indeed impaired. However, this impairment can be modulated by external, cell-independent factors, Retinoic acid, but not dimethylsulfoxide, permitted activation of the mesodermal marker gene T(Bra), which was also activated when SRF was expressed in Srf(-/-) ES cells, Embryoid bodies from Srf(-/-) ES cell aggregates also activated mesodermal marker genes, but displayed unusual morphologies and impairment in cavitation, Finally, in nude mice, Srf(-/-) ES cells readily differentiated into mesodermal cells of Srf(-/-) genotype, including cartilage, bone or muscle cells. We demonstrate that SRF contributes to mesodermal gene expression of ES cells and that Srf(-/-) ES cells display a non-cell-autonomous defect in differentiation towards mesoderm.
引用
收藏
页码:5835 / 5844
页数:10
相关论文
共 50 条
  • [41] Non-cell-autonomous retinoid signaling is crucial for renal development
    Rosselot, Carolina
    Spraggon, Lee
    Chia, Ian
    Batourina, Ekatherina
    Riccio, Paul
    Lu, Benson
    Niederreither, Karen
    Dolle, Pascal
    Duester, Gregg
    Chambon, Pierre
    Costantini, Frank
    Gilbert, Thierry
    Molotkov, Andrei
    Mendelsohn, Cathy
    DEVELOPMENT, 2010, 137 (02): : 283 - 292
  • [42] Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells
    Kizana, E.
    Cingolani, E.
    Marban, E.
    GENE THERAPY, 2009, 16 (09) : 1163 - 1168
  • [43] Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells
    E Kizana
    E Cingolani
    E Marbán
    Gene Therapy, 2009, 16 : 1163 - 1168
  • [44] A non-cell-autonomous mechanism for the control of plant architecture and epidermal differentiation involves intercellular trafficking of BREVIPEDICELLUS protein
    Rim, Yeonggil
    Jung, Jin-Hee
    Chu, Hyosub
    Cho, Won Kyong
    Kim, Seon-Won
    Hong, Jong Chan
    Jackson, David
    Datla, Raju
    Kim, Jae-Yean
    FUNCTIONAL PLANT BIOLOGY, 2009, 36 (03) : 280 - 289
  • [45] Non-cell-autonomous function of DR6 in Schwann cell proliferation
    Colombo, Alessio
    Hsia, Hung-En
    Wang, Mengzhe
    Kuhn, Peer-Hendrik
    Brill, Monika S.
    Canevazzi, Paolo
    Feederle, Regina
    Taveggia, Carla
    Misgeld, Thomas
    Lichtenthaler, Stefan F.
    EMBO JOURNAL, 2018, 37 (07):
  • [46] Cell-Autonomous and Non-Cell-Autonomous Neuroprotective Functions of RORα in Neurons and Astrocytes during Hypoxia
    Jolly, Sarah
    Journiac, Nathalie
    Naudet, Frederic
    Gautheron, Vanessa
    Mariani, Jean
    Vernet-der Garabedian, Beatrice
    JOURNAL OF NEUROSCIENCE, 2011, 31 (40): : 14314 - 14323
  • [47] Dual functions of cell-autonomous and non-cell-autonomous ADAM10 activity in granulopoiesis
    Yoda, Masaki
    Kimura, Tokuhiro
    Tohmonda, Takahide
    Uchikawa, Shinichi
    Koba, Takeshi
    Takito, Jiro
    Morioka, Hideo
    Matsumoto, Morio
    Link, Daniel C.
    Chiba, Kazuhiro
    Okada, Yasunori
    Toyama, Yoshiaki
    Horiuchi, Keisuke
    BLOOD, 2011, 118 (26) : 6939 - 6942
  • [48] Impairment of ubiquitylation by mutation in Drosophila E1 promotes both cell-autonomous and non-cell-autonomous Ras-ERK activation in vivo
    Yan, Hua
    Chin, Mei-Ling
    Horvath, Elizabeth A.
    Kane, Elizabeth A.
    Pfleger, Cathie M.
    JOURNAL OF CELL SCIENCE, 2009, 122 (09) : 1461 - 1470
  • [49] Cell-Autonomous and Non-Cell-Autonomous Roles for Irf6 during Development of the Tongue
    Goudy, Steven
    Angel, Peggi
    Jacobs, Britni
    Hill, Cynthia
    Mainini, Veronica
    Smith, Arianna L.
    Kousa, Youssef A.
    Caprioli, Richard
    Prince, Lawrence S.
    Baldwin, Scott
    Schutte, Brian C.
    PLOS ONE, 2013, 8 (02):
  • [50] Wnt2 accelerates cardiac myocyte differentiation from ES-cell derived mesodermal cells via non-canonical pathway
    Onizuka, Takeshi
    Yuasa, Shinsuke
    Kusumoto, Dai
    Shimoji, Kenichiro
    Egashira, Toru
    Ohno, Yohei
    Kageyama, Toshimi
    Tanaka, Tomofumi
    Hattori, Fumiyuki
    Fujita, Jun
    Ieda, Masaki
    Kimura, Kensuke
    Makino, Shinji
    Sano, Motoaki
    Kudo, Akira
    Fukuda, Keiichi
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2012, 52 (03) : 650 - 659