Srf-/- ES cells display non-cell-autonomous impairment in mesodermal differentiation

被引:75
|
作者
Weinhold, B
Schratt, G
Arsenian, S
Berger, J
Kamino, K
Schwarz, H
Rüther, U
Nordheim, A
机构
[1] Univ Tubingen, Inst Zellbiol, Mol Biol Abt, D-72076 Tubingen, Germany
[2] Med Hsch Hannover, Inst Mol Biol, D-30625 Hannover, Germany
[3] Max Planck Inst Entwicklungsbiol, D-72074 Tubingen, Germany
[4] Med Hsch Hannover, Inst Pathol, D-30625 Hannover, Germany
[5] Univ Dusseldorf, D-40225 Dusseldorf, Germany
来源
EMBO JOURNAL | 2000年 / 19卷 / 21期
关键词
embryoid bodies; embryonic stem cells; mesoderm induction; murine embryogenesis; serum response factor;
D O I
10.1093/emboj/19.21.5835
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The serum response factor (SRF) transcription factor is essential for murine embryogenesis. Srf(-/-) embryos stop developing at the onset of gastrulation, lacking detectable mesoderm, This developmental defect may reflect cell-autonomous impairment of Srf(-/-) embryonic cells in mesoderm formation. Alternatively, it may be caused by a non-cell-autonomous defect superimposed upon inappropriate provision of mesoderm-inducing signals to primitive ectodermal cells. We demonstrate that the ability of Srf(-/-) embryonic stem (ES) cells to differentiate in vitro into mesodermal cells is indeed impaired. However, this impairment can be modulated by external, cell-independent factors, Retinoic acid, but not dimethylsulfoxide, permitted activation of the mesodermal marker gene T(Bra), which was also activated when SRF was expressed in Srf(-/-) ES cells, Embryoid bodies from Srf(-/-) ES cell aggregates also activated mesodermal marker genes, but displayed unusual morphologies and impairment in cavitation, Finally, in nude mice, Srf(-/-) ES cells readily differentiated into mesodermal cells of Srf(-/-) genotype, including cartilage, bone or muscle cells. We demonstrate that SRF contributes to mesodermal gene expression of ES cells and that Srf(-/-) ES cells display a non-cell-autonomous defect in differentiation towards mesoderm.
引用
收藏
页码:5835 / 5844
页数:10
相关论文
共 50 条
  • [11] Cell-autonomous and non-cell-autonomous functions of caspase-8
    Ben Moshe, Tehila
    Kang, Tae-Bong
    Kovalenko, Andrew
    Barash, Hila
    Abramovitch, Rinat
    Galun, Eithan
    Wallach, David
    CYTOKINE & GROWTH FACTOR REVIEWS, 2008, 19 (3-4) : 209 - 217
  • [12] Oxidative Stress in Cells with Extra Centrosomes Drives Non-Cell-Autonomous Invasion
    Arnandis, Teresa
    Monteiro, Pedro
    Adams, Sophie D.
    Bridgeman, Victoria Louise
    Rajeeve, Vinothini
    Gadaleta, Emanuela
    Marzec, Jacek
    Chelala, Claude
    Malanchi, Ilaria
    Cutillas, Pedro R.
    Godinho, Susana A.
    DEVELOPMENTAL CELL, 2018, 47 (04) : 409 - +
  • [13] In my own time: A non-cell-autonomous circadian regulation in plant cells
    Ugalde, Jose Manuel
    Maric, Aida
    PLANT PHYSIOLOGY, 2023, 193 (01) : 159 - 161
  • [14] Non-cell-autonomous RNA silencing spread in plants
    Uddin, Mohammad Nazim
    Kim, Jae-Yean
    BOTANICAL STUDIES, 2011, 52 (02) : 129 - 136
  • [15] A NON-CELL-AUTONOMOUS MUTATION REGULATING JUVENILITY IN MAIZE
    POETHIG, S
    NATURE, 1988, 336 (6194) : 82 - 83
  • [17] Non-Cell-Autonomous peculation of Cellular Senescence in Cancer
    Di Mitri, Diletta
    Alimonti, Andrea
    TRENDS IN CELL BIOLOGY, 2016, 26 (03) : 215 - 226
  • [18] The cell-autonomous and non-cell-autonomous roles of the Hippo pathway in heart regeneration
    Liu, Shijie
    Li, Rich Gang
    Martin, James F.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2022, 168 : 98 - 106
  • [19] Retinoic acid directs neuronal differentiation of human pluripotent stem cell lines in a non-cell-autonomous manner
    Tonge, Peter D.
    Andrews, Peter W.
    DIFFERENTIATION, 2010, 80 (01) : 20 - 30
  • [20] A non-cell-autonomous circadian rhythm of bioluminescence reporter activities in individual duckweed cells
    Watanabe, Emiri
    Muranaka, Tomoaki
    Nakamura, Shunji
    Isoda, Minako
    Horikawa, Yu
    Aiso, Tsuyoshi
    Ito, Shogo
    Oyama, Tokitaka
    PLANT PHYSIOLOGY, 2023, 193 (01) : 677 - 688