We analyze Lorentzian spacetimes subject to curvature-dimension bounds using the Bakry-Emery-Ricci tensor. We extend the Hawking-Penrose type singularity theorem and the Lorentzian timelike splitting theorem to synthetic dimensions N <= 1, including all negative synthetic dimensions. The rigidity of the timelike splitting reduces to a warped product splitting when N = 1. We also extend the null splitting theorem of Lorentzian geometry, showing that it holds under a null curvature-dimension bound on the Bakry-Emery-Ricci tensor for all N is an element of (-infinity, 2] boolean OR (n, infinity) and for the N = infinity case as well, with reduced rigidity if N,= 2. In consequence, the basic singularity and splitting theorems of Lorentzian Bakry-Emery theory now cover all synthetic dimensions for which such theorems are possible. The splitting theorems are found always to exhibit reduced rigidity at the critical synthetic dimension. (C) 2018 Elsevier B.V. All rights reserved.
机构:
Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5208, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, FranceUniv Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5208, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
机构:
Univ Paris 06, Umr Cnrs 7599, Lab Probabilites & Modeles Aleatoires, Paris 6, FranceUniv Paris 06, Umr Cnrs 7599, Lab Probabilites & Modeles Aleatoires, Paris 6, France
Bolley, Francois
Gentil, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Claude Bernard, Inst Camille Jordan, Umr Cnrs 5208, Lyon 1, FranceUniv Paris 06, Umr Cnrs 7599, Lab Probabilites & Modeles Aleatoires, Paris 6, France
Gentil, Ivan
Guillin, Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Univ Clermont Auvergne, Umr Cnrs 6620, Lab Math, Clermont Ferrand, FranceUniv Paris 06, Umr Cnrs 7599, Lab Probabilites & Modeles Aleatoires, Paris 6, France
Guillin, Arnaud
Kuwada, Kazumasa
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Tokyo, JapanUniv Paris 06, Umr Cnrs 7599, Lab Probabilites & Modeles Aleatoires, Paris 6, France