(K, N)-Convexity and the Curvature-Dimension Condition for Negative N

被引:45
|
作者
Ohta, Shin-ichi [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
Convex function; Curvature-dimension condition; Ricci curvature; Gradient flow; Functional inequality; METRIC-MEASURE-SPACES; DISPLACEMENT CONVEXITY; FINSLER MANIFOLDS; ALEXANDROV SPACES; BRUNN-MINKOWSKI; RICCI CURVATURE; HEAT-FLOW; LI-YAU; INEQUALITIES; GEOMETRY;
D O I
10.1007/s12220-015-9619-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the range of N to negative values in the (K, N)-convexity (in the sense of Erbar-Kuwada-Sturm), the weighted Ricci curvature RicN and the curvaturedimension condition CD(K, N). We generalize a number of results in the case of N > 0 to this setting, including Bochner's inequality, the Brunn-Minkowski inequality and the equivalence between Ric(N) >= K and CD(K, N). We also show an expansion bound for gradient flows of Lipschitz (K, N)-convex functions.
引用
收藏
页码:2067 / 2096
页数:30
相关论文
共 50 条