A comparative study of bulk InGaAs and InGaAs/InGaAs strain-compensated Quantum Well Cells for thermophotovoltaic applications

被引:3
|
作者
Abbott, P [1 ]
Rohr, C [1 ]
Connolly, JP [1 ]
Ballard, I [1 ]
Barnham, KWJ [1 ]
Ginige, R [1 ]
Corbett, B [1 ]
Clarke, G [1 ]
Bland, SW [1 ]
Mazzer, M [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, EXSS Phys, London SW7 2BW, England
关键词
D O I
10.1109/PVSC.2002.1190788
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the main requirements for thermophotovoltaic (TPV) systems powered by fuel combustion is a low level of pollution. To achieve this, low combustion temperatures are needed. The most efficient narrow band emitters emit at long wavelengths, necessitating low band gap cells. Erbium oxide emits around 1500nm and we report an InGaAs p-n cell which is well matched to this spectrum. Two more suitable emitters are thulium oxide and holmium oxide, which emit around 1700nm and 1950nm respectively, beyond the band gap of lattice matched InGaAs. To absorb this emission, lattice mismatched materials must be used. The technique of strain compensation can prevent the creation of dislocations within the structure. We present results of a strain-compensated InGaAs/InGaAs Quantum Well Cell (QWC) which demonstrates the success of this structure in allowing wavelength response to be extended whilst displaying a lower dark current.
引用
收藏
页码:1058 / 1061
页数:4
相关论文
共 50 条
  • [31] A novel GaAsN/InGaAs strain-compensated multi-quantum wells solar cell
    Wu, Pei-Hsuan
    Su, Yan-Kuin
    Tzeng, Yen C.
    Hong, Hwen-Fen
    Chu, Kuan-Yu
    Chen, Ying-Ru
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2007, 22 (05) : 549 - 552
  • [32] Growth and characterization of strain-compensated InAsP/GaInP and InGaAs/GaInP multiple quantum wells
    Tu, CW
    Mei, XB
    Yan, CH
    Bi, WG
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1995, 35 (1-3): : 166 - 170
  • [33] Reliable operation of strain-compensated 1.06 mu m InGaAs/InGaAsP/GaAs single quantum well lasers
    Fukunaga, T
    Wada, M
    Hayakawa, T
    APPLIED PHYSICS LETTERS, 1996, 69 (02) : 248 - 250
  • [34] Growth of InGaAs/GaAsP Strain-compensated Multiple Quantum Wells via MOCVD Technology
    Wang X.
    Wang H.-Z.
    Zhang B.
    Wang Q.-H.
    Fan J.
    Zou Y.-G.
    Ma X.-H.
    Faguang Xuebao/Chinese Journal of Luminescence, 2021, 42 (04): : 448 - 454
  • [35] Optimized interfacial management for InGaAs/GaAsP strain-compensated superlattice structure
    Ma, ShaoJun
    Wang, Yunpeng
    Sodabanlu, Hassanet
    Watanabe, Kentaroh
    Sugiyama, Masakazu
    Nakano, Yoshiaki
    JOURNAL OF CRYSTAL GROWTH, 2013, 370 : 157 - 162
  • [36] Structural and Photoluminescence Properties for Highly Strain-Compensated InGaAs/InAlAs Superlattice
    Gu Yi
    Zhang Yong-Gang
    Li Ai-Zhen
    Wang Kai
    Li Cheng
    Li Yao-Yao
    CHINESE PHYSICS LETTERS, 2009, 26 (07)
  • [37] High-speed modulation of strain-compensated InGaAs-GaAsP-InGaP multiple-quantum-well lasers
    Han, H
    Freeman, PN
    Hobson, WS
    Dutta, NK
    Lopata, J
    Wynn, JD
    Chu, SNG
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (09) : 1133 - 1135
  • [38] Low-threshold strain-compensated InGaAs(N) (λ=1.19-1.31 μm) quantum-well lasers
    Tansu, N
    Mawst, LJ
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (04) : 444 - 446
  • [39] Effects of distance between wells on band structure and characteristics of InGaAs/InGaAsP strain-compensated multiple quantum well lasers
    Ma, CS
    Wang, LJ
    Liu, SY
    SOLID-STATE ELECTRONICS, 2000, 44 (12) : 2123 - 2129
  • [40] Strain-Compensated InGaAs/InAlAs Quantum Cascade Detector of 4.5 μm Operating at Room Temperature
    Kong Ning
    Liu Jun-Qi
    Li Lu
    Liu Feng-Qi
    Wang Li-Jun
    Wang Zhan-Guo
    CHINESE PHYSICS LETTERS, 2010, 27 (03)