A comparative study of bulk InGaAs and InGaAs/InGaAs strain-compensated Quantum Well Cells for thermophotovoltaic applications

被引:3
|
作者
Abbott, P [1 ]
Rohr, C [1 ]
Connolly, JP [1 ]
Ballard, I [1 ]
Barnham, KWJ [1 ]
Ginige, R [1 ]
Corbett, B [1 ]
Clarke, G [1 ]
Bland, SW [1 ]
Mazzer, M [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, EXSS Phys, London SW7 2BW, England
关键词
D O I
10.1109/PVSC.2002.1190788
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the main requirements for thermophotovoltaic (TPV) systems powered by fuel combustion is a low level of pollution. To achieve this, low combustion temperatures are needed. The most efficient narrow band emitters emit at long wavelengths, necessitating low band gap cells. Erbium oxide emits around 1500nm and we report an InGaAs p-n cell which is well matched to this spectrum. Two more suitable emitters are thulium oxide and holmium oxide, which emit around 1700nm and 1950nm respectively, beyond the band gap of lattice matched InGaAs. To absorb this emission, lattice mismatched materials must be used. The technique of strain compensation can prevent the creation of dislocations within the structure. We present results of a strain-compensated InGaAs/InGaAs Quantum Well Cell (QWC) which demonstrates the success of this structure in allowing wavelength response to be extended whilst displaying a lower dark current.
引用
收藏
页码:1058 / 1061
页数:4
相关论文
共 50 条
  • [1] InGaAs/InGaAs strain-compensated quantum well cells for thermophotovoltaic applications
    Rohr, C
    Connolly, JP
    Ekins-Daukes, N
    Abbott, P
    Ballard, I
    Barnham, KWJ
    Mazzer, M
    Button, C
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2): : 158 - 161
  • [2] Characterisation of strain-compensated InGaAs/InGaAs quantum well cells for TPV applications
    Abbott, P
    Rohr, C
    Connolly, JP
    Ballard, I
    Barnham, KWJ
    Ginige, R
    Clarke, G
    Nasi, L
    Mazzer, M
    THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY, 2003, 653 : 213 - 221
  • [3] InP-based lattice-matched InGaAsP and strain-compensated InGaAs/InGaAs quantum well cells for thermophotovoltaic applications
    Rohr, Carsten
    Abbott, Paul
    Ballard, Ian
    Connolly, James P.
    Barnham, Keith W. J.
    Mazzer, Massimo
    Button, Chris
    Nasi, Lucia
    Hill, Geoff
    Roberts, John S.
    Clarke, Graham
    Ginige, Ravin
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)
  • [4] Strain-compensated InGaAs/InGaAs quantum well cell with 2μm band-edge
    Rohr, C
    Abbott, P
    Ballard, I
    Connolly, JP
    Barnham, KWJ
    Nasi, L
    Ferrari, C
    Lazzarini, L
    Mazzer, M
    Roberts, J
    THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY, 2003, 653 : 344 - 353
  • [5] InAs/InGaAs digital alloy strain-compensated quantum well lasers
    Cao Yuan-Ying
    Gu Yi
    Zhang Yong-Gang
    Li Yao-Yao
    Fang Xiang
    Li Ai-Zhen
    Zhou Li
    Li Hao-Si-Bai-Yin
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2014, 33 (03) : 213 - 217
  • [6] Strain-Compensated InGaAs Terahertz Quantum Cascade Lasers
    Ohtani, Keita
    Beck, Mattias
    Faist, Jerome
    ACS PHOTONICS, 2016, 3 (12): : 2297 - 2302
  • [7] Characterization of InGaAs/GaNAs strain-compensated quantum dot solar cells
    Nagarajan, S.
    Ali, M.
    Jussila, H.
    Mattila, P.
    Aierken, A.
    Sopanen, M.
    Lipsanen, H.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 3-4, 2012, 9 (3-4): : 972 - 974
  • [8] Band structures and characteristics of InGaAs/InGaAsP strain-compensated quantum well lasers
    C.S. Ma
    L.J. Wang
    S.Y. Liu
    Optical and Quantum Electronics, 2001, 33 : 209 - 223
  • [9] Band structures and characteristics of InGaAs/InGaAsP strain-compensated quantum well lasers
    Ma, CS
    Wang, LJ
    Liu, SY
    OPTICAL AND QUANTUM ELECTRONICS, 2001, 33 (02) : 209 - 223
  • [10] Strain-compensated InGaAs/InAlAs quantum-cascade lasers
    Liu Feng-Qi
    Wang Zhanguo
    Li Lu
    Wang Lijun
    Liu Junqi
    2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 835 - 836