Equitable vertex arboricity of 5-degenerate graphs

被引:10
|
作者
Chen, Guantao [1 ]
Gao, Yuping [2 ]
Shan, Songling [3 ]
Wang, Guanghui [2 ]
Wu, Jianliang [2 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
基金
美国国家科学基金会;
关键词
Graph; Equitable coloring; Vertex arboricity; Equitable vertex; arboricity; 5-Degenerate graph; MAXIMUM DEGREE; COLORINGS;
D O I
10.1007/s10878-016-9997-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Wu et al. (Discret Math 313:2696-2701, 2013) conjectured that the vertex set of any simple graph G can be equitably partitioned into m subsets so that each subset induces a forest, where Delta(G) is the maximum degree of G and m is an integer with m >= inverted right perpendicular Delta(G)+1/2inverted left perpendicular . This conjecture is verified for 5-degenerate graphs in this paper.
引用
收藏
页码:426 / 432
页数:7
相关论文
共 50 条
  • [11] Equitable Vertex Arboricity Conjecture Holds for Graphs with Low Degeneracy
    Xin Zhang
    Bei Niu
    Yan Li
    Bi Li
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 1293 - 1302
  • [12] Equitable Vertex Arboricity Conjecture Holds for Graphs with Low Degeneracy
    Zhang, Xin
    Niu, Bei
    Li, Yan
    Li, Bi
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (08) : 1293 - 1302
  • [13] On the Strong Equitable Vertex 2-Arboricity of Complete Bipartite Graphs
    Tao, Fangyun
    Jin, Ting
    Tu, Yiyou
    [J]. MATHEMATICS, 2020, 8 (10) : 1 - 6
  • [14] On equitable list arboricity of graphs
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    Pelsmajer, Michael J.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 419 - 441
  • [15] Interpolation Theorems for the Arboricity and the Vertex Arboricity of Graphs
    Khoployklang, Teerasak
    Chaemchan, Araya
    [J]. THAI JOURNAL OF MATHEMATICS, 2024, 22 (01): : 285 - 293
  • [16] The strong equitable vertex 2-arboricity of complete bipartite and tripartite graphs
    Nakprasit, Keaitsuda Maneeruk
    Nakprasit, Kittikorn
    [J]. INFORMATION PROCESSING LETTERS, 2017, 117 : 40 - 44
  • [17] Fractional vertex arboricity of graphs
    Yu, Qinglin
    Zuo, Liancui
    [J]. DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 245 - +
  • [18] Linear arboricity of degenerate graphs
    Chen, Guantao
    Hao, Yanli
    Yu, Guoning
    [J]. JOURNAL OF GRAPH THEORY, 2023, 104 (02) : 360 - 371
  • [19] Equitable List Point Arboricity of Graphs
    Zhang, Xin
    [J]. FILOMAT, 2016, 30 (02) : 373 - 378
  • [20] Equitable List Vertex Colourability and Arboricity of Grids
    Drgas-Burchardt, Ewa
    Dybizbanski, Janusz
    Furmanczyk, Hanna
    Sidorowicz, Elzbieta
    [J]. FILOMAT, 2018, 32 (18) : 6353 - 6374