Equitable List Point Arboricity of Graphs

被引:9
|
作者
Zhang, Xin [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
关键词
Equitable coloring; List coloring; Point arboricity; Planar graph;
D O I
10.2298/FIL1602373Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is list point k-arborable if, whenever we are given a k-list assignment L(v) of colors for each vertex v is an element of V(G), we can choose a color c(v) is an element of L(v) for each vertex v so that each color class induces an acyclic subgraph of G, and is equitable list point k-arborable if G is list point k-arborable and each color appears on at most inverted right perpendicular vertical bar V(G)vertical bar/kinverted left perpendicular vertices of G. In this paper, we conjecture that every graph G is equitable list point k-arborable for every k >= inverted right perpendicular(Delta(G) + 1)/2inverted left perpendicular and settle this for complete graphs, 2-degenerate graphs, 3-degenerate claw-free graphs with maximum degree at least 4, and planar graphs with maximum degree at least 8.
引用
收藏
页码:373 / 378
页数:6
相关论文
共 50 条
  • [1] On equitable list arboricity of graphs
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    Pelsmajer, Michael J.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 419 - 441
  • [2] LIST POINT ARBORICITY OF GRAPHS
    Xue, Nini
    Wu, Baoyindureng
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (02)
  • [3] List Point Arboricity of Dense Graphs
    Lingyan Zhen
    Baoyindureng Wu
    [J]. Graphs and Combinatorics, 2009, 25 : 123 - 128
  • [4] List Point Arboricity of Dense Graphs
    Zhen, Lingyan
    Wu, Baoyindureng
    [J]. GRAPHS AND COMBINATORICS, 2009, 25 (01) : 123 - 128
  • [5] Equitable vertex arboricity of graphs
    Wu, Jian-Liang
    Zhang, Xin
    Li, Hailuan
    [J]. DISCRETE MATHEMATICS, 2013, 313 (23) : 2696 - 2701
  • [6] On the equitable vertex arboricity of graphs
    Tao, Fangyun
    Lin, Wensong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (06) : 844 - 853
  • [7] The list linear arboricity of graphs
    Kim, Ringi
    Postle, Luke
    [J]. JOURNAL OF GRAPH THEORY, 2021, 98 (01) : 125 - 140
  • [8] A Conjecture on Equitable Vertex Arboricity of Graphs
    Zhang, Xin
    Wu, Jian-Liang
    [J]. FILOMAT, 2014, 28 (01) : 217 - 219
  • [9] Equitable vertex arboricity of subcubic graphs
    Zhang, Xin
    [J]. DISCRETE MATHEMATICS, 2016, 339 (06) : 1724 - 1726
  • [10] EQUITABLE VERTEX ARBORICITY OF PLANAR GRAPHS
    Zhang, Xin
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 123 - 131