Skipping CNN Convolutions Through Efficient Memoization

被引:4
|
作者
de Moura, Rafael Fao [1 ]
Santos, Paulo C. [1 ]
de Lima, Joao Paulo C. [1 ]
Alves, Marco A. Z. [2 ]
Beck, Antonio C. S. [1 ]
Carro, Luigi [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Informat Inst, Porto Alegre, RS, Brazil
[2] Univ Fed Parana, Dept Informat, Curitiba, Parana, Brazil
关键词
Convolutional Neural Networks; Computation reuse; Memoization;
D O I
10.1007/978-3-030-27562-4_5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional Neural Networks (CNNs) have become a de-facto standard for image and video recognition. However, current software and hardware implementations targeting convolutional operations still lack embracing energy budget constraints due to the CNN intensive data processing behavior. This paper proposes a software-based memoization technique to skip entire convolution calculations. We demonstrate that, by grouping output values within proximity-based clusters, it is possible to reduce by hundreds of times the amount of memory necessary to store all the tables. Also, we present a table mapping scheme to index the input set of each convolutional layer to its output value. Our experimental results show that for a YOLOv3-tiny CNN, it is possible to achieve a speedup up to 3.5x while reducing the energy consumption to 22% of the baseline with an accuracy loss of 7.4%.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 50 条
  • [41] Window memoization: an efficient hardware architecture for high-performance image processing
    Farzad Khalvati
    Mark D. Aagaard
    Journal of Real-Time Image Processing, 2010, 5 : 195 - 212
  • [42] Research on Efficient CNN Acceleration Through Mixed Precision Quantization: A Comprehensive Methodology
    He, Yizhi
    Liu, Wenlong
    Tahir, Muhammad
    Li, Zhao
    Zhang, Shaoshuang
    Amur, Hussain Bux
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (12) : 806 - 817
  • [43] SkipBERT: Efficient Inference with Shallow Layer Skipping
    Wang, Jue
    Chen, Ke
    Chen, Gang
    Shou, Lidan
    McAuley, Julian
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 7287 - 7301
  • [44] MERCI: Efficient Embedding Reduction on Commodity Hardware via Sub-query Memoization
    Lee, Yejin
    Seo, Seong Hoon
    Choi, Hyunji
    Sul, Hyoung Uk
    Kim, Soosung
    Lee, Jae W.
    Ham, Tae Jun
    ASPLOS XXVI: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, 2021, : 302 - 313
  • [45] Raising Compute Density of Molecular Dynamics Simulation Through Approximate Memoization
    Khemira, Salim
    Wang, Xinyuan
    Nguyen, Anh
    Tamiya, Yutaka
    Taiji, Makoto
    Yoshikawa, Takahide
    Anderson, Jason H.
    2024 IEEE 35TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, ASAP 2024, 2024, : 195 - 203
  • [46] Efficient long-range convolutions for point clouds
    Peng, Yifan
    Lin, Lin
    Ying, Lexing
    Zepeda-Nunez, Leonardo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [47] An Efficient Accelerator for Multiple Convolutions From the Sparsity Perspective
    Chen, Qinyu
    Huang, Yan
    Sun, Rui
    Song, Wenqing
    Lu, Zhonghai
    Fu, Yuxiang
    Li, Li
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (06) : 1540 - 1544
  • [48] Diagonalwise Refactorization: An Efficient Training Method for Depthwise Convolutions
    Qin, Zheng
    Zhang, Zhaoning
    Li, Dongsheng
    Zhang, Yiming
    Peng, Yuxing
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 721 - 728
  • [49] DiCENet: Dimension-Wise Convolutions for Efficient Networks
    Mehta, Sachin
    Hajishirzi, Hannaneh
    Rastegari, Mohammad
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) : 2416 - 2425
  • [50] CondenseNet: An Efficient DenseNet using Learned Group Convolutions
    Huang, Gao
    Liu, Shichen
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2752 - 2761